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I. Introduction

Conjoint experiments have become a standard part of the political scientist’s toolkit. Across the

top scholarly journals, political scientists regularly interpret the results of these experiments to make

empirical claims about both majority preferences and electoral outcomes. In this paper we show

that the target estimand of conjoint experiments, the average marginal component effect (AMCE),

does not typically support such claims. This occurs because the AMCE averages over two aspects

of individual preferences: their direction (whether or not an individual prefers A to A′) and their

intensity (how much they prefer A to A′). In so doing, it assigns greater weight to voters who

intensely prefer a particular outcome.

This paper clarifies the connection between the AMCE and the substantive quantities of interest

that political scientists frequently seek to recover in preference-elicitation experiments. First, we

illustrate by way of a simple example how the AMCE aggregates individual choices. In so doing, we

show how it can prove misleading for identifying proportions of voters who favor particular features—

an inference researchers implicitly make when they summarize population preferences (“Americans

prefer highly-educated immigrants”), characterize electoral majorities (“voters want a lower tax

rate”), or project winners of elections (“the Democratic party would be well-served to nominate a

female candidate”).

Having established the substantive claims that it cannot support, we turn to an analysis of three

valid interpretations of the AMCE. The first is as a change in expected vote share. We advise caution

for researchers who wish to proceed with this interpretation. First, the average vote share does not

imply other, more intuitive measures of electoral advantage. We show through our running example

that there can exist underlying preference distributions that produce an average vote share that

favors A over A′ where, nevertheless, A′ beats A in the vast preponderance of elections. Far from

being a statistical artifact, preference distributions of this form are pervasive: they reflect populations
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in which a minority intensely prefers an alternative, while a majority has a mild preference for its

opposite. Second, the average vote share is only valid with respect to the particular randomization

scheme defined by the experimenter. This is to say, the averaging implied by this interpretation is

over the set of electoral contests between candidates defined internally to the experimental design.

So, unless researchers have theoretical reasons to care about the mean election in the particular set

of contests their experiment implies, this interpretation is unlikely to prove informative.

Next, we highlight a second valid interpretation of the AMCE characterizing the mapping between

it and the Borda rule, a preference aggregation mechanism that picks a winner based on voters’

rankings of alternatives. We prove that the AMCE can be used to make statements about winners

of Borda-rule elections. Of course, not many real-world contests are decided by this procedure.1

This leads us to ask what further inferences about the underlying distribution of voter preferences

we can draw from the AMCE. In doing so we provide a method that, for an estimated AMCE,

allows researchers to place bounds on the proportion of experimental subjects that maintain a strict

preference for a candidate-feature. We close this discussion with a sufficient condition under which

the AMCE indicates a majority preference: when the direction and intensity of voters’ preferences

are uncorrelated.

Finally, we explore the relationship between the AMCE and a simple model of choice. In providing

this structural foundation for the AMCE, we show that it supports a third interpretation: an average

of individual ideal points over candidate-features. Typically, elections are decided by the median

voter’s ideal point. Although a class of probabilistic voting models does rely on the mean preference

to characterize equilibria, the relevance of the mean ideal point in these models depends on a set of

strong assumptions. Amongst these is, crucially, that candidates know voters’ preferences up to a

1Examples include some elections in Slovenia and Kiribati and voting for the Heisman Trophy

and Eurovision Song Contest.
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random shock. The purpose of conjoint experiments, however, is to uncover exactly these preferences.

Our analysis highlights the importance of placing theoretical structure on the estimands used in

applied empirical work. While methods in this literature are often lauded for being “model-free,”

we emphasize that any estimand that aggregates preferences is by its very nature a social choice

rule. Without theories describing the mapping of individual preferences to observed choices, as well

as their aggregation, nonparametric estimates of population preferences are difficult to interpret

substantively.

II. Invalid Interpretations of the AMCE

The goal of factorial designs like those in forced-choice conjoint experiments is to mimic the complex

comparisons faced by real-world decision-makers.2 By randomizing a large number of candidate and

platform features, political scientists aim to construct realistic approximations of the choices voters

face. With repeated observations of these randomized features and respondents’ choices, the AMCE

can be computed via a simple difference-in-means or least-squares regression, and is defined as the

average effect of varying one attribute of a candidate profile, e.g. the race or gender of the candidate,

from A to A′, on the probability that the candidate will be chosen, where the expectation is taken

over the distribution of the other attributes as well as over respondents.

This quantity is commonly used to make claims about voters’ preferences for particular policies,

2Throughout, we focus on forced-choice conjoint experiments as the most common implementation

in political science. Another popular implementation involves using scales (or thermometers) as the

response variable. We are unaware of a microfoundation of choice behavior when responses take

a range of values such that it would allow a theoretical exploration similar this paper. This does

not imply that our critique only applies to forced-choice conjoints. If, for example, respondents

partition the scale such that there is a one-to-one mapping between disjoint ranges of scores and

unique candidates, then the results we present for the forced-choice setup carry through exactly.
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such as: “Americans express a pronounced preference for immigrants who are well educated, are

in high-skilled professions, and plan to work upon arrival” (Hainmueller and Hopkins, 2015), and

“[there is] strong evidence for progressive preferences over taxation among the American public”

(Ballard-Rosa, Martin and Scheve, 2017). Conjoint results are also used to make statements about

candidates for elected office, such as: “voters prefer experienced or locally born politicians, but do not

prefer politicians affiliated with a major political party... and are indifferent with regard to dynastic

family ties and gender” (Horiuchi, Smith and Yamamoto, 2018), and “voters and legislators do not

seem to hold female candidates in disregard; all else equal, they prefer female to male candidates”

(Teele, Kalla and Rosenbluth, 2018).3

While statements of the form “voters prefer A to A′” have many possible meanings,4 a reasonable

interpretation is that there are more voters who prefer A to A′ than vice versa. To make such a

statement, it would suffice to say that the median voter prefers A to A′. But the representative

voter whose preferences are captured by the AMCE is not the median; it is the average over both

the intensive and extensive margins of choice. Outside of fantastical institutional designs (e.g, Lalley

and Weyl (2018)), electoral contests are not typically swayed by how much a subset of voters prefer

a given candidate; rather, elections are won—and voting populations are most straightforwardly

described—by how many voters prefer each candidate.

Here, we work through an example that begins with voter preferences, translates those preferences

into observed choices, and aggregates those choices to the AMCE. The example is designed to build

3We conducted a review of conjoint analyses published in top political science journals and found

that 83% of all papers using conjoint experiments make direct reference to voter preferences and 51%

interpret their findings in the context of elections. This is described in Table G1 in the supplemental

material.

4Do researchers mean to say that there exist some voters who prefer A to A′? That most voters

prefer A to A′? That all voters prefer A to A′?
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intuition around the AMCE’s underlying preference aggregation mechanism, and to illustrate how a

positive AMCE can be inconsistent with a number of majoritarian claims. Throughout, we aim to

make as few assumptions about the underlying preferences of individual voters as possible. While we

view the assumptions we make as benign, we note that if the AMCE exhibits undesirable properties

under these assumptions, placing even less structure on the problem will not rectify whatever issues

we identify and only obscure what drives them. Furthermore, we emphasize that we are agnostic

about the content of voters’ preferences. Individuals may be self-interested, other-regarding, or some

mixture thereof. We impose only that individual preferences are complete and transitive.5

Since researchers who use conjoint experiments seek to characterize preference relations over

candidate-features, we define our primitives over this space. For simplicity, consider an electorate

of five voters (V1, V2, V3, V4, V5). Candidates possess two attributes that are relevant to voters:

their gender (female or male) denoted by G ∈ {F,M}, and their party (Democrat or Republican)

denoted P ∈ {D,R}. Each candidate is an ordered pair of gender and party, so that there are four

different candidate profiles: FD,FR,MD, and MR. The voters’ preferences over attributes are

given in Table 1. It can easily be seen that a majority of voters prefer male candidates to female

candidates, and a majority of voters prefer Republican candidates to Democratic candidates.

V1 V2 V3 V4 V5
M � F M � F M � F F �M F �M
R � D R � D R � D D � R D � R

Table 1—Preferences Over Attributes

We construct preferences over candidates from preferences over attributes in the following way:

5Formally, completeness is defined as x � y, y � x or both, and transitivity is defined as if x � y

& y � z, then x � z. We define a strict preference relation as x � y if and only if x � y and not

y � x and henceforth refer to this definition when we write “preference.” To vastly simplify the

presentation, we rule out indifference as is standard in the social choice literature.
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Voters prefer candidates that have both of the attributes they like to those that have one attribute

they like, which in turn they prefer to candidates who have neither of the attributes they like. Notice

that there are two types of candidates that have only one attribute that matches a voter’s preference.

For these candidates, whether a voter prefers one or the other depends on which attribute the voter

places a greater weight on. For example, if a voter places more weight on gender, we would expect

them to choose a candidate who has their preferred gender but not their preferred party over a

candidate who has their preferred party but not gender.

In this simple setting, we can use the weight relation >> to indicate that an attribute is given

greater weight in determining a voter’s preference ordering. Accordingly, we assume that voters 1,

2, and 3 place more weight on the candidate’s party (P >> G), whereas voters 4 and 5 place more

on the candidate’s gender (G >> P ).6 Combining weights with preferences over attributes, we can

produce voters’ preferences over candidate profiles. These are presented in Table 2. Given these

preferences, in Table 3 we present the votes candidates would obtain in each head-to-head election

for every possible pairwise comparison; the winner is bolded in the first column.

Rank V1 V2 V3 V4 V5
1. MR MR MR FD FD
2. FR FR FR FR FR
3. MD MD MD MD MD
4. FD FD FD MR MR

Table 2—Preferences Over Candidate Profiles

Next, we derive the AMCE for male over female candidates following Hainmueller, Hopkins and

6Note that these relative weights are meaningful within individuals but cannot be compared

across respondents. That the minority cares more intensely about gender than party does not imply

that it cares more intensely about gender than does the majority. The weights therefore cannot

speak to which group’s turnout or candidate choice will be more influenced by a change along the

relevant dimension.
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Comparison V1 V2 V3 V4 V5 Tally
MR,FR MR MR MR FR FR 3, 2
MR,FD MR MR MR FD FD 3, 2
MR,MD MR MR MR MD MD 3, 2
MD,FR FR FR FR FR FR 0, 5
MD,FD MD MD MD FD FD 3, 2
FR,FD FR FR FR FD FD 3, 2

Table 3—Aggregate Preferences Over Candidate Profiles

Yamamoto (2014), Proposition 3. The intuition behind the comparisons being made when estimating

the AMCE is given in Table 4. Here, Ȳ (C1, C2) denotes the number of votes candidate C1 obtains

when running against candidate C2. For each contest we can obtain Ȳ from the last column of Table

3. To obtain the AMCE for males we compare how male candidates (column 1) fare relative to

female candidates (column 2) when they run against the same opponent, then sum this difference

over all possible opponents. This sum is finally normalized by the number of possible profiles (4)

times the number of possible profiles with a given gender (2) times the number of voters (5). The

procedure yields an AMCE for male equal to −1/20, meaning that the average probability of being

chosen is higher for female candidates than it is for male candidates.

Ȳ (MR,MD) − Ȳ (FR,MD) = −2
Ȳ (MR,FD) − Ȳ (FR,FD) = 0
Ȳ (MR,MR) − Ȳ (FR,MR) = 1/2
Ȳ (MR,FR) − Ȳ (FR,FR) = 1/2
Ȳ (MD,MD) − Ȳ (FD,MD) = 1/2
Ȳ (MD,FD) − Ȳ (FD,FD) = 1/2
Ȳ (MD,MR) − Ȳ (FD,MR) = 0
Ȳ (MD,FR) − Ȳ (FD,FR) = −2

−2

(# of profiles)× (# of voters) = 40
×(# of profiles with a given gender )

AMCE = −1/20

Table 4—Obtaining the AMCE
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Our toy example illustrates the intuition driving our main result. Notice that the AMCE for male

candidates is negative (thus the AMCE for female candidates is positive), and yet the following

statements do not hold:

1) A majority of voters prefer female to male candidates
As Table 1 indicates, a majority of voters (3 out of 5) prefer males to females.

2) A majority of voters prefer female to male candidates, all else equal
As Table 2 indicates, fixing party at R, 3 out of 5 voters prefer the male candidate (MR) to
the female candidate (FR). The same goes for MD over FD.

3) Female candidates beat male candidates in the majority of possible head-to-head electoral con-
tests
As Table 3 indicates, men win 4 of the 6 possible elections.

4) Female candidates beat male candidates in the majority of possible all-else-equal head-to-head
electoral contests
Table 3 also shows that in all-else-equal races (MR vs. FR and MD vs. FD), the male
candidate always wins.

The AMCE produces an estimate that indicates the opposite of these majoritarian statements be-

cause the minority, who place the greatest weight on the gender dimension, also have a preference

for female candidates, while the majority, who prefer men, place less weight on gender than party

when making their decisions. When aggregating preferences over gender, the AMCE mechanically

assigns greater weight to the minority that strongly prefer women. Crucially, this result is a feature

of the target estimand and is not a problem of estimation. Our example is analogous to a survey in

which each respondent is asked to evaluate all possible head-to-head comparisons.

III. Three Valid Interpretations of the AMCE

A. Expected Vote Share

One might think to interpret the AMCE as the expected change in vote share associated with a

given candidate-feature.7 To see this, note that each row of Table 4 is simply the difference in votes

7On this point, see Bansak et al. (2021).
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otherwise identical men and women receive in pairs of elections with a fixed opponent. Averaging

over the total number of voters and the set of elections defined by the experiment yields the average

change in vote share associated with a candidate being male. It is also exactly equivalent to the

AMCE of male over female.

While it is correct to interpret the AMCE as a change in expected vote share, doing so runs into the

same aggregation problem that we highlighted in our example. The negative change in expected vote

share in our example is driven by one landslide election, MD vs. FR, where the female candidate

wins 5–0. In all other contests, the female candidate loses—just by a smaller margin. Thus, out-

of-sample predictions and claims about the relative electability of specific candidates are no more

warranted under this interpretation of the AMCE than any of the others we have discussed.

What is more, the change in expected vote share is defined over the specific set of elections

determined by the randomization scheme. The sign and magnitude of the AMCE vary with the

attributes included in the experimental design, holding fixed the experimental subjects and their

preferences. This occurs because the inclusion of a new attribute may change the relative rankings

of candidates with respect to the other, previously included attributes.

To see this, consider the same population of five voters as in our previous example. However,

instead of conducting an experiment where we randomize only party and gender, we now include

a third attribute, race, which for simplicity takes on only two values, Black or white. Denote this

R ∈ {B,W}. Let voters 1, 2, and 3 have the preference W � B and voters 4 and 5 have the preference

B � W . Furthermore, let voters 1, 2, and 3 place the greatest weight on party, then gender, then

race (P >> G >> R), and let voters 4 and 5 place the greatest weight on race, then gender, then

party (R >> G >> P ). As in the previous section, we can produce a full ranking of candidate

profiles using this combination of weights and preferences. Voters most prefer candidates with all

three of their preferred features and least prefer those with none of their preferred features. Among
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candidates that have two of the three features they prefer, they rank candidates with their first and

second most preferred feature first, first and third most preferred features second, and second and

third most preferred features third. Finally, we assume that voters prefer all candidates with two

preferred features to all candidates with just one preferred feature. Preferences over candidates are

given in Table 5.

Rank V1 V2 V3 V4 V5
1. MRW MRW MRW FDB FDB
2. MRB MRB MRB FRB FRB
3. FRW FRW FRW MDB MDB
4. MDW MDW MDW FDW FDW
5. FRB FRB FRB MRB MRB
6. MDB MDB MDB FRW FRW
7. FDW FDW FDW MDW MDW
8. FDB FDB FDB MRW MRW

Table 5—Preferences Over Candidate Profiles—Example Part II

Since these are the same exact voters from the previous example, their preferences with respect to

gender have not changed: 3/5 of them prefer men to women. As before, men win a large majority

of elections.8 However, in contrast with our previous example, instead of always ranking female

candidates above male candidates, voters 4 and 5 will now be willing to accept a man in some

contests because they place more weight on race than gender. Since including race changes the

relative ranking of male and female candidates, it changes the AMCE researchers would derive from

this experiment. Again we calculate the AMCE, yielding 1/16—the exact opposite of the substantive

result from the previous experiment where we considered only gender and party.9

We have therefore shown that, even with identical subjects, the results researchers obtain from

8Male candidates win thirteen of the sixteen elections in which they face off against female

candidates, and nineteen of the twenty-eight overall contests.

9Trivially, we could add a fourth attribute, and again flip the sign of the AMCE. In Section B of

the supplemental materials we provide simple R code to perform this and similar calculations.
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conjoint experiments depend upon the specific set of attributes included in their experimental design

and thereby the particular set of elections implied by this design. In the next section, we provide

further insight into this sensitivity by showing a direct mapping between the AMCE and the Borda

rule, which fails to satisfy the independence of irrelevant alternatives axiom (IIA). That is, the Borda

winner—and thereby the AMCE—a researcher obtains from a given experiment changes when she

removes particular candidates from the contest, for instance when she restricts the randomization

to exclude particular feature combinations.10 In this way, we provide a microfoundation for the

results of de la Cuesta, Egami and Imai (2021), who highlight the sensitivity of the AMCE to the

randomization scheme imposed by researchers. We show that this is not just a statistical property of

the AMCE, but a core theoretical feature of the aggregation mechanism that generates this quantity.

B. Borda Rule Elections

Since the objective of conjoint experiments is to construct a mapping from individual to aggregate

preferences, we build on the literature in positive political theory that formally evaluates mechanisms

that do just that. That is, we characterize the AMCE as a preference aggregation rule—a mapping

from individual to aggregate preferences (Austen-Smith and Banks, 2000, p. 26). This exercise

reveals that the AMCE is closely related to the Borda rule, a voting system that assigns points to

candidates according to their order of preference. We build on this result to provide a method that,

for a given AMCE estimate, allows researchers to place bounds on the proportion of experimental

subjects that maintain a strict preference for a candidate-feature.

Borda rule voting is implemented as follows. With K candidates, the Borda rule assigns zero

points to each voter’s least preferred candidate, one point to the candidate preferred to that but

10In Section B of the supplementary materials we also provide an example of this IIA violation

wherein the sign of the AMCE changes depending on which feature-combinations are excluded.
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no other, and so on until the most preferred candidate receives K − 1 points. Thus for each voter,

the Borda score contributed to a candidate corresponds to the number of other candidates to whom

they are preferred. This in turn is equal to the number of times that candidate would be chosen if

the voter was presented with every possible binary comparison. A candidate’s Borda score is the

sum of the individual Borda scores assigned to that candidate by each voter, and is thus equal to

the total number of times that candidate would be chosen if each voter was subjected to each binary

comparison. This is summarized in Lemma 1:

Lemma 1. The Borda score of each profile is equal to the total number of times that profile is chosen

in all pairwise comparisons.

Proof. All proofs are in the appendix.

In the context of conjoint experiments, we further define the Borda score of a feature as the

sum of the Borda scores of each profile that has that feature. For example, the Borda score of

“female” is the sum of the Borda scores of all female candidates. This definition allows us to state

our first main result that connects the AMCE to the Borda rule:

Proposition 1. The difference of the Borda scores of two features is proportional to the AMCE.

The intuition for the proof of Proposition 1 follows from Lemma 1 and the observation that Borda

and AMCE aggregate preferences in analogous ways. They both tally the number of alternatives

that are defeated by candidates with a given feature, then use that tally to compare across features.

The AMCE is constructed by taking the difference of these tallies and normalizing them. In the

appendix we walk through the steps of how to get to AMCE from Borda scores, and produce the

same expression as the AMCE in Equation 5 of Hainmueller, Hopkins and Yamamoto (2014).

This connection between the Borda rule and the AMCE is important, because the Borda rule has

several undesirable properties that the AMCE inherits—properties that were already revealed in our
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initial example. The Borda rule violates the independence of irrelevant alternatives (IIA) criterion,

which states that the relative ranking of two candidates should not depend on the inclusion of another

candidate. In our example, we showed that the sign of the AMCE of male versus female depends

upon whether or not we include race, because the inclusion of race changes the relative ranking of

male and female candidates. A second social choice property of the Borda rule is that it violates the

majority criterion, which states that if a majority of voters prefer one candidate then that candidate

must win. This property also extends to attributes. In our example, we showed that a majority of

voters prefer male to female candidates, but the AMCE of male over female is negative. In linking

the AMCE to the Borda rule, we have now shown that this violation of the majority criterion is a

more general property of the AMCE’s underlying preference aggregation mechanism.

The relationship between the AMCE and the Borda rule can usefully be leveraged to derive bounds

on the fraction of the population that prefers a feature. That is, for a given AMCE, total number

of possible candidate profiles in the experiment, and number of values the attribute of interest can

take, we can characterize the maximum and minimum fractions of voters who might prefer that

feature over the baseline. Our next result presents these bounds. For simplicity, we assume that

preferences are separable, that is, voters have unconditional preferences over candidate features; we

discuss what happens when we relax this assumption at the end of this section.11

Proposition 2. Let y denote the fraction of voters who prefer t1 over t0. Given an AMCE of

11Formally, voter i’s choices are separable when for all t1 and t0, we have

Yi
(
(t1, T[−l]), (t0, T[−l])

)
= Yi

(
(t1, T

′
[−l]), (t0, T

′
[−l])

)
where T[−l] and T ′[−l] denote two arbitrary vectors of other treatment components.
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π(t1, t0), it must be that

y ∈
[
max

{
π(t1, t0)τK + τ

K(τ − 1) + τ
, 0

}
,min

{
π(t1, t0)τK +K(τ − 1)

K(τ − 1) + τ
, 1

}]

where τ is the number of distinct values the attribute of interest can take.

To find these bounds, all we need to calculate are the range of possible Borda scores a respondent

can contribute to a feature (as a function of the total number of possible profiles) and the number of

distinct values the attribute of interest can take. First, we assume that the attribute of interest has

the highest possible importance for all supporters of the feature of interest, i.e. the respondents who

prefer it over the baseline. For this group, all profiles with the feature of interest are preferred to

all profiles without that feature, yielding the highest possible Borda score for the feature of interest

and the minimum possible Borda score for the baseline. Thus we obtain the maximum net Borda

score a supporter can contribute to a feature.

Second, we assume that the attribute of interest is least important for all opponents of that feature,

i.e. the respondents who prefer the baseline. When this is the case the feature of interest will factor

into the respondent’s choice only if the profiles are otherwise identical. Subject to the constraint

that opponents prefer the baseline, this results in the highest possible Borda score for the feature and

the lowest for the baseline, yielding the minimum net Borda score an opponent can subtract from a

feature. Having calculated the maximum Borda score for a feature per supporter and opponent, we

can invoke Proposition 1 to calculate the maximum possible AMCE for a given fraction of opponents

and supporters. Inverting this function yields the lowest possible fraction of supporters for a given

AMCE. The upper bound is calculated analogously. Interested readers can find the details in the

proof, where we formally state and carefully trace the arguments summarized here. We also provide

simple R code to compute these bounds for given values of π, τ , and K in Appendix C.
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In Figure 1, we apply this proposition to compute the bounds for AMCEs of 0.05, 0.10, 0.15, and

0.25 for a binary feature, plotting the upper and lower bounds of the proportion of experimental

subjects who prefer a binary feature on the y-axis against the number of potential candidate profiles

that respondents can choose from on the x-axis. As the figure shows, even for AMCEs of a fairly

large magnitude, it takes fewer than five possible profiles for these bounds to grow to a range that is

inconclusive about the preference of the majority. Of course, nearly all conjoint experiments exceed

five possible candidate profiles. For instance, with six attributes taking two possible values each—

still a conservative design by recent standards—there are already 26 = 64 possible profiles. Only

when the AMCE is extremely large—an effect size of 0.25, which is rarely achieved by anything other

than controls such as a candidate’s partisanship or experience—does the bounding exercise assure

a majority preference. Even then, if the attribute of interest were ternary instead of binary, this

would no longer be the case even at an effect size of 0.25.

In Appendix Table C1, we conduct this exercise for every forced-choice conjoint experiment in the

top three political science journals published between 2016 and the first quarter of 2019. We construct

our bounds for the largest estimated effect presented in each of these papers. From the eight papers

we analyze, only one, Mummolo (2016), produces bounds that guarantee a majority preference. In

this paper, the estimated effect is quite large (0.30), the attribute of interest is binary, and the

number of possible profiles is the smallest by far of all the included experiments. In Supplementary

Appendix C, we demonstrate how researchers can exploit the separability assumption further and

use the structure of conjoint data to compute bounds that are guaranteed to be weakly narrower than

those given in Proposition 2. However, when we incorporate uncertainty estimates, this approach

does not produce sufficiently narrow bounds to change any of the substantive conclusions in Table C1.

The bounding exercise we propose contains the entire range of preferences that are consistent

with a given AMCE. In other words, the upper and lower bounds reflect a worst-case scenario for
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Figure 1. Upper and lower bounds on fraction of people who prefer a feature, consistent with an AMCE of .05,

.10, .15, and .25, respectively, as a function of number of possible candidate profiles.



PREFERENCES IN CONJOINT EXPERIMENTS 17

researchers, which is realized when preference direction and intensity are highly correlated. Thus,

Proposition 2 underscores the dangers of making statements about aggregate preferences with so

little structure on individual choices.

Of course, this worst-case scenario may be unlikely. To show how the correlation between the

intensity and direction of preferences relates to the proportion of voters who prefer a given candidate-

feature, we work through a toy example with two binary attributes and fifteen voters, where we are

interested in the proportion of voters with a preference for men over women. Define the intensity of

preferences for a feature t1 over t0 as the absolute value of the difference between the Borda scores of

the two features. The direction of preferences is simply a binary indicator for whether voters prefer

t1 over t0, i.e. 1{Yi(t1, t0) = 1}. In Figure 2 we plot the Pearson correlation coefficient between

direction and intensity of preferences for gender on the x-axis and every possible proportion of the

voters that prefer men over women that is consistent a given AMCE on the y-axis, for AMCEs of

0.05 (the left panel) and 0.10 (the right panel).12 In the left panel, we see that for an AMCE of

men over women of 0.05, a correlation of less than 0.4 is required to infer a majority preference for

men; for an AMCE of 0.10, all but a correlation of 1 assures that the sign of the AMCE indicates

the majority preference. Note, however, that Figure 2 corresponds to the most charitable case, as

pictured for K = 4 in the bounds in Figure 1. As the number of possible profiles grows to K = 16

(only four binary attributes), even small positive correlations can be sufficient to make the AMCE

indicate the opposite of the majority preference. Thus, Figure 2 illustrates a general rule of thumb for

12Specifically, we generate all the combinations (with replacement) of 15 voters that can be con-

structed from the eight possible non-interactive preference orderings for the four candidates given in

Table 2. We use 15 voters because that number is both informative and computationally feasible,

yielding CR(8, 15) = 170, 544 combinations to evaluate. For each possible voter set, we compute

an AMCE of male over female, a proportion of the sample that prefers males over females, and a

correlation of direction and intensity. Figure 2 displays all these possibilities for a given AMCE.
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researchers: for a positive (negative) AMCE, a positive (negative) correlation between respondents’

direction and intensity vectors may lead to the failure of the AMCE to correspond in sign to the

majority preference. Just how strong that correlation must be is a function of where the relevant

upper/lower bound is located relative to the 0.5 threshold.
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Figure 2. Combinations of proportions of respondents who prefer males to females and correlations between di-

rection and intensity of male-female preference consistent with a given AMCE, computed for fifteen respondents

and two binary attributes.

Furthermore, it can be seen in Figure 2 that when the correlation of direction and intensity is zero,

the AMCE corresponds in sign with the majority preference. Using the logic underlying Proposi-

tion 2, we show that this holds in general, allowing researchers to assess how the AMCE performs

in the best-case scenario, when there is no systematic relationship between preference intensity and

direction for the feature of interest. When this is the case—that is, when our expectation about the

importance of an attribute to a respondent does not change when we learn about the direction of

their preference—the sign of the AMCE must correspond to the feature preferred by the majority.

However, under these conditions the AMCE will be smaller in magnitude than the size of the margin,
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thus providing a conservative estimate of that quantity.

Proposition 3. When the direction and intensity of preferences across respondents are uncorrelated,

the AMCE of a binary attribute has the same sign as the majority preference, but underestimates

the size of the margin.

Proof of Proposition 3 follows closely the logic of Proposition 2: when intensity and direction are

uncorrelated, on the net, each supporter contributes as much to a feature as an opponent contributes

to the baseline. As such, the points contributed by supporters and opponents cancel out, and the

remainder corresponds in sign to the margin of victory for the feature preferred by the majority.

How realistic is the assumption of no correlation between the direction and intensity of attribute

preferences? To answer this we turn to survey data from the 2016 American National Election

Studies (ANES) and assess the degree to which there is a correlation in the expressed direction

and intensity on a wide range of survey items. Specifically, the ANES asks about both direction

and intensity of preferences for twenty-two issue areas; across these issues, respondents assess both

whether they support or oppose a position, and how much importance they attach to the question.

On seventeen of these questions—that is, for the vast majority of the issues in the ANES for which we

have a measure of both direction and intensity of preferences—we find evidence that the supporters

of a given policy or issue area have a meaningfully different assessment of its importance than its

opponents. Indeed, the ANES provides strong evidence of the very dynamic that drives our stylized

example: self-described “feminists” attach much more importance to this identity than do self-

described “anti-feminists.” See Supplementary Appendix D for a full discussion and results of this

analysis.

We conclude this discussion with one final consideration: what happens when we relax the sepa-

rability assumption and allow for arbitrary interactions between feature preferences? For instance,

rather than assuming that voters unconditionally prefer men or women, we now allow for the possi-
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bility that a voter prefers Republican men to Republican women, but Democrat women to Democrat

men. In Supplementary Appendix E, we derive a summary statistic for aggregate feature preferences

that captures this more complex, and potentially more realistic, preference structure, providing the

necessary scaffolding for our final result:

Proposition 4. When separability is relaxed, the bounds on the fraction of voters who prefer t1 over

t0 are wider for any given AMCE.

We also show that when separability is relaxed, the proportion of experimental subjects who pre-

fer t1 to t0 is no longer indicative of an electoral advantage. In other words, without separability,

even with tight bounds indicating a majority of respondents preferring t1 to t0, we cannot conclude

that candidates with feature t1 will beat candidates with feature t0 in most all-else-equal contests.

Furthermore, without separability, individual feature preferences do not necessarily satisfy transitiv-

ity.13 Put simply, relaxing separability makes the very notion of a preference over features difficult

to pin down from a theoretical perspective.

C. Average of Ideal Points

Although the proposed estimator of the AMCE of Hainmueller, Hopkins and Yamamoto (2014)

is “model free,” in this section we demonstrate how it relates to an underlying model of choice.

Our purpose in providing this simple structural interpretation of the AMCE is to illustrate from

another angle the same aggregation problem highlighted in the preceding sections, wherein we cannot

disentangle the intensity and direction of individual preferences. To start, consider two candidates

c ∈ {1, 2} running in contest j who offer platforms xijc to voter i. A platform xijc is a vector of

policies of length M that fully characterizes a candidate in contest j. Let bi represent an M length

vector of voter i’s preferred policy locations (e.g., their issue-specific ideal-points), and assume that

13A simple example is provided in Supplementary Appendix E.
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voters have quadratic utility functions. Thus, voter i’s utility is maximized when candidate c offers

a platform that exactly matches her preferred policy positions, and the loss she obtains is a function

of the distance between the candidate’s policies and her ideal platform. Her utility from Candidate

c’s platform is given by:

(1) Ui(xijc) = −(bi − xijc)
2 + ηijc

It follows that:

Pr(yij1 = 1) = Pr(Ui(xij1) > Ui(xij2))

= Pr(−(bi − xij1)2 + ηij1 > −(bi − xij2)2 + ηij2)

= Pr(ηij2 − ηij1 < 2(b′i(xij1 − xij2) + x′ij2xij2 − x′ij1xij1)

(2)

where yij1 is a binary indicator that equals 1 when respondent i chooses Candidate 1 in contest j

and 0 otherwise. In Supplementary Appendix F we walk through the steps that relate Equation (2)

to a linear regression model estimated on data generated from a conjoint experiment, where xij1 and

xij2 are vectors of randomized candidate attributes that have been discretized into binary indicators

with an omitted category. Letting ∆xij represent the difference between the vectors xij1 and xij2,

and m represent a given feature or element of this vector, one can estimate the regression:

yij1 =
∑
m

βim∆xijm + εij(3)

The slope, βim = 2bim − 1, gives the change in probability for individual i of choosing Candidate 1

when Candidate 1 has feature m and Candidate 2 does not, holding all their other features constant,

and we obtain the AMCE for feature m by averaging βim over individuals.
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Under this simple model of choice, the AMCE can be interpreted as an average of respondents’

ideal points. The usefulness of the mean voter’s preference, however, depends upon the particular

model of elections that applied researchers have in mind. As is well known, the median voter’s

preference characterizes the unique equilibrium in a large number of probabilistic and deterministic

voting models, and under a broad set of conditions (Calvert, 1985; Duggan, 2006; Bernhardt, Duggan

and Squintani, 2007). By contrast, mean voter results maintain in a limited class of probabilistic

voting models (Hinich, 1977; Lin, Enelow and Dorussen, 1999; Schofield, 2007) that require stronger

assumptions about the motivations of candidates, the shape of voters’ utility functions, and symmetry

in the distribution of voter preferences, the latter of which is akin to our uncorrelated weights

assumption.14 Most importantly, these models require that parties know each voter’s ideal point

and only face uncertainty about voters’ preference “shocks” or “biases”—additively separable error

terms distributed independently of ideal points. Unfortunately, political scientists employ conjoint

experiments precisely because we do not know voters’ preferences.15

IV. Conclusion

We have shown that the AMCE, the target estimand of many conjoint experiments, does not

support many interpretations ascribed to it by political scientists. A positive AMCE for a particular

candidate-feature does not imply that the majority of respondents prefer that feature over the

baseline. It does not indicate that they prefer a candidate with that feature to a candidate without

it, all else equal. It does not mean that voters are more likely to elect a candidate with that feature

14For an extensive discussion of necessary and sufficient conditions for the existence of mean-voter

equilibria, see Banks and Duggan (2005).

15In another class of probabilistic voting models candidates face uncertainty about voters’ ideal

points. In these models, convergent equilibria have candidates placing themselves at the expected

position of the median voter.
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than candidates without it. How, then, should researchers interpret the AMCE?

First, as shown by Bansak et al. (2021), the AMCE reflects the effect of changing an attribute

on the expected vote share, where the average is taken with respect to the distribution of other

attributes. As demonstrated in our main example, identical expected vote shares can be generated

from a preference distribution that results in a single landslide in favor of women and most other

contests resolving in favor of men, as well as from a preference distribution where female candidates

win nearly all elections. Because it averages over the intensive and extensive margins of voter

preferences, this expected vote share cannot speak to theoretically important questions such as

which feature most voters prefer or which feature would dominate in most elections.

Second, we have characterized the AMCE as a preference aggregation mechanism and shown its

relationship to the Borda count. Few real-world electoral contests are decided by Borda rule voting,

but a more practical application of this insight is that it allows us to derive bounds on the proportion

of the experimental sample that prefers a feature over the alternative, given a particular AMCE.

Our analysis shows that as the number of possible candidate profiles increases, these bounds quickly

expand to a range that is inconclusive about majority preferences for magnitudes of the AMCE that

most applied researchers would reasonably encounter.

Third, we have demonstrated that the AMCE can be thought of as an average of the direction and

intensity of voters’ preferences, or an average of ideal points. Where might this interpretation be of

interest? One area is in evaluating hypotheses generated by models of probabilistic voting. Notably,

these models require strong additional assumptions for the mean voter’s preference to be relevant in

characterizing equilibria. Perhaps because of this, we are unaware of a single study that has used a

conjoint experiment towards this end.

In general, the problems of interpretation we describe arise when there exists a minority that

intensely prefers a feature and a majority that feels the opposite, but less strongly. The larger
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the correlation between direction and intensity, the more misleading the AMCE with respect to

quantities of interest in a one-person, one-vote setting. Thus, if the researcher has good reasons

to believe that her experimental sample has uncorrelated directions and intensities of preferences,

then she can proceed with a majoritarian interpretation of her results; that said, correlations of

the sort we describe pervade areas of interest to political scientists, from gender parity in elected

office (Teele, Kalla and Rosenbluth, 2018) to who should be favored by the nation’s immigration

policy (Hainmueller and Hopkins, 2015). Moreover, note that while our running example concerns

voting in a majoritarian context, our critique applies more broadly to any attempt to summarize a

population’s preferences. Moving from ill-defined claims such as “Population X prefers A to B” to

concrete statements concerning any proportion of a population requires buttressing the AMCE with

very strong assumptions about the distribution of preferences—or developing alternative estimators

altogether.

How should applied researchers proceed? Conjoint analysis remains most useful for questions

where the average preference is of interest. However, scholars seeking answers to majoritarian

questions may find themselves in a bind. On the one hand, we have shown through our bounding

exercise that if they want to interpret their findings with respect to a majority preference, then

they should restrict themselves to conservative randomization schemes that limit the number of

attributes and potential candidate-profiles. Only with a conservative design and a small number of

binary attributes is there hope of producing sufficiently small bounds on an estimated AMCE to

conclusively reflect a majority preference. On the other hand, because the AMCE is dependent upon

the particular features included in an experiment, for a result to be externally valid researchers must

include the full set of theoretically relevant attributes in their randomization scheme. That is, for a

conjoint experiment to provide substantively relevant results, researchers must get the distribution of

randomized attributes exactly right. Unfortunately, it may prove difficult to construct a “Goldilocks”
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experimental design that serves both goals.

Recently, researchers have begun developing tools for recovering relevant quantities of interest from

conjoint and similar designs. Abramson et al. (2020) show that under the assumption of conditional

preference homogeneity, researchers can use machine learning tools to recover quantities like the

proportion of voters with a strict preference for candidate-features and to generate individual-level

predictions for out-of-sample electoral contests. Future avenues for research on preference elicitation

in political science should develop experimental designs that can directly recover relevant quantities

of interest. For example, there exist experimental and survey designs that can obtain the individual-

level estimates of preference intensities (Chen, Cavaillé and Van Der Straeten, 2019; Wiswall and

Zafar, 2018). Further developing these tools will allow researchers to make more precise—and theo-

retically grounded—statements about voters’ preferences.
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A. Proofs

LEMMA 1: The Borda score of each profile is equal to the total number of times that profile is chosen

in all pairwise comparisons.

Proof of Lemma 1. Suppose there are N voters and K profiles. Consider voter i’s preference ranking

over profiles. For any pair of profiles xj , xk, denote by Yi(xj , xk) = 1 if i chooses profile xj over xk in

a pairwise comparison, and Yi(xj , xk) = 0 otherwise. Without loss of generality, reorder the profiles

such that the profile most preferred by i is x1, the second most preferred is x2, and so on such that

the least preferred is xK . Assign i’s most preferred profile a Borda score of bi(x1) = K − 1, their

second most preferred profile a score of bi(x2) = K − 2, and so on such that their least preferred

profile has a score of zero. Suppose now i is presented with each pairwise comparison. Then, i

chooses their most preferred profile x1 every time it is on the ballot, against every other profile, so

∑
j 6=1

Yi(x1, xj) = 1 + 1 + 1 + ...+ 1︸ ︷︷ ︸
K−1 times

= K − 1
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times. The second most preferred will be chosen every time except when compared with the most

preferred profile, so ∑
j 6=2

Yi(x2, xj) = 0 + 1 + 1 + 1 + ...+ 1︸ ︷︷ ︸
K−2 times

= K − 2

times. Going this way, we see that individual Borda scores over profiles match exactly with the

number of times each profile is chosen when every pairwise comparison is made. Finally, the least

preferred profile will never be chosen in a pairwise comparison made by voter i,
∑
j 6=K

Yi(xK , xj) =

0+0+0+...+0 = 0. Thus, for each individual voter, the Borda score of a profile is equal to the number

of times it is chosen when that voter makes all pairwise comparisons, bi(xm) =
∑
j 6=m

Yi(xm, xj).

The aggregate Borda score of a profile is the sum of individual voters’ Borda scores of that profile.

When we sum across voters the times each profile xm is chosen in all pairwise comparisons, their

sums must be equal to the sum of individual Borda scores. Formally,

b(xm) ≡
N∑
i=1

bi(xm) =
N∑
i=1

∑
j 6=m

Yi(xm, xj).

Lemma 2. With separable preferences and binary attributes, a profile has the highest Borda score

if and only if all its features have the highest Borda scores for their respective attributes.

Proof of Lemma 2. Let us first restate the formal definition of separability. Voter i’s choices are

separable when for all t1 and t0, we have

Yi
(
(t1, T[−l]), (t0, T[−l])

)
= Yi

(
(t1, T

′
[−l]), (t0, T

′
[−l])

)
where T[−l] and T ′[−l] denote two arbitrary vectors of other treatment components.

Formally, Borda score of a feature t1, B(t1) is

B(t1) ≡
N∑
i=1

∑
x1∈κ(t1)

∑
xj 6=x1

Yi(x1, xj)

where κ(t1) denotes the set of all profiles that have the feature t1. Separability implies

bi(t1, T[−l])− bi(t1, T ′[−l]) = bi(t0, T[−l])− bi(t0, T ′[−l])
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for all t1, t0, T[−l], and T ′[−l] by a straightforward application of Lemma 1. Summing these up

N∑
i=1

bi(t1, T[−l])−
N∑
i=1

bi(t0, T[−l]) =
N∑
i=1

bi(t1, T
′
[−l])−

N∑
i=1

bi(t0, T
′
[−l]).

Suppose now (t1, T
∗
[−l]) is the profile with the highest Borda score. This means:

N∑
i=1

bi(t1, T
∗
[−l])−

N∑
i=1

bi(t0, T
∗
[−l]) ≥ 0.

By the separability assumption, it follows that for any arbitrary vector of treatments T[−l]:

N∑
i=1

bi(t1, T[−l])−
N∑
i=1

bi(t0, T[−l]) ≥ 0

Because this is true for each vector of treatments T[−l], it is also true when we sum over them and

get the Borda score of t1. Therefore, the Borda score of t1 must be greater than that of t0 because

B(t1) =
∑
T[−l]

N∑
i=1

bi(t1, T[−l]) ≥
∑
T[−l]

N∑
i=1

bi(t0, T[−l]) = B(t0).

PROPOSITION 1: The difference of the Borda scores of two features is proportional to the AMCE.

Proof of Proposition 1. The number of profiles that have t1 is equal to the number of profiles that

have t0, which is in turn equal to the total number of profiles divided by the number of unique values

the attribute of interest can take: |κ(t1)| = |κ(t0)| = K
τ . Then, by dividing the Borda score of a

feature, B(t1) by the total number of pairwise comparisons t1 appears in, K
τ NK, and taking the

difference with the Borda score B(t0) of the baseline feature t0, divided by K
τ NK yields exactly the

AMCE of t1 as defined in Hainmueller, Hopkins and Yamamoto (2014):

π(t1, t0) =

N∑
i=1

∑
x∈κ(t1)

∑
xj 6=x

Yi(x, xj)

|κ(t1)|NK
−

N∑
i=1

∑
x∈κ(t0)

∑
xj 6=x

Yi(x, xj)

|κ(t0)|NK
=

τ

NK2
(B(t1)−B(t0)) .
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PROPOSITION 2: Let y denote the fraction of voters who prefer t1 over t0. Given an AMCE of

π(t1, t0), it must be that

y ∈
[
max

{
π(t1, t0)τK + τ

K(τ − 1) + τ
, 0

}
,min

{
π(t1, t0)τK +K(τ − 1)

K(τ − 1) + τ
, 1

}]

where τ is the number of distinct values the attribute of interest can take.

Proof of Proposition 2. We prove this proposition by finding the range of Borda scores of t1 and

t0 that can be rationalized for a given proportion of respondents who prefer t1 over t0; and then

inverting this range to find the minimum and maximum proportions of respondents who prefer t1

over t0 for a given AMCE.

Let us find the minimum fraction of respondents who prefer t1 over t0 that is consistent with an

AMCE. Notice that for a fixed fraction of respondents, the AMCE is maximized when respondents

in favor of t1 assign the highest priority to the attribute, they rank t1 the best, and t0 the worst;

whereas those who prefer t0 like t1 next, and assign the lowest priority to it. In other words, when

those who prefer t1 rank all profiles with t1 at the top, and all profiles with t0 at the bottom, this

drives the AMCE up. To help with the intuition, the preferences of such a voter might look like:

t1αβγ︸ ︷︷ ︸
K−1

� t1α′βγ︸ ︷︷ ︸
K−2

� . . . � t1α′β′γ′︸ ︷︷ ︸
K−K

τ

� t2αβγ � . . . � t2α′β′γ′ � . . . � t0αβγ︸ ︷︷ ︸
K
τ
−1

� t0α′βγ︸ ︷︷ ︸
K
τ
−2

� . . . � t0α′β′γ′︸ ︷︷ ︸
0

where α, β, and γ represent a collection of other features of candidates included in the experiment.

Holding constant the other features, the difference in Borda scores of a profile with t1 and with t0

is thus K − K
τ . Formally, for any vector of other attributes T[−l], the profile (t1, T[−l]) is maximally

chosenK−K
τ more times than (t0, T[−l]) when every pairwise comparison is made. From Proposition 1

we know that this implies the maximum difference in Borda scores, bi(t1, T[−l]) − bi(t0, T[−l]) =

K− K
τ , for any arbitrary combination of other attributes, T[−l]. Because there are K

τ possible unique

combinations of other attributes, each respondent makes K
τ such comparisons between t1 and t0.

Thus, each respondent who prefers t1 maximally generates a K2(τ−1)
τ2

higher Borda score for t1 than

t0.

Similarly, the maximum AMCE is only obtained when those who prefer t0 assign the lowest

priority to this attribute, and rank profiles with t1 just below otherwise identical profiles with t0.
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Such preferences might look like:

t0αβγ︸ ︷︷ ︸
K−1

� t1αβγ︸ ︷︷ ︸
K−2

� t2αβγ � . . . � t0α′βγ︸ ︷︷ ︸
K−τ−1

� t1α′βγ︸ ︷︷ ︸
K−τ−2

� . . . � t0α′β′γ′︸ ︷︷ ︸
τ−1

� t1α′β′γ′︸ ︷︷ ︸
τ−2

� t2α′β′γ′ � . . .

When other features are held constant, the difference in Borda scores of a profile with t1 and t0 is

−1. In other words, for respondents who prefer t0 to t1, the maximum difference is bj(t1, T[−l]) −

bj(t0, T[−l]) = −1, for any arbitrary combination of other attributes, T[−l]. Again, because there are

K
τ possible combinations of other features and thus as many comparisons between profiles with t1

and t0, each respondent who prefers t0 minimally generates K
τ more points for t0 than t1.

Thus, for a given AMCE π(t1, t0), we can derive the minimum fraction y of voters who prefer t1,

ymin, by summing these scores and normalizing:

π(t1, t0) =
(ymin)K

2(τ−1)
τ2

− (1− ymin)Kτ
K2

τ

.

Simple algebra reveals

ymin = max

{
π(t1, t0)τK + τ

K(τ − 1) + τ
, 0

}
.

A very similar argument establishes the upper bound of y.

PROPOSITION 3: When the direction and intensity of preferences across respondents are un-

correlated, the AMCE of a binary attribute has the same sign as the majority preference, but

underestimates the size of the margin.

Proof of Proposition 3. Denote by n1 the number of respondents who prefer t1 to t0. Similarly, let

n0 = N − n1 refer to the number of respondents who prefer t0 to t1. Without loss of generality,

reorder respondents so those who prefer t1 to t0 have the lowest rank, that is i ∈ {1, . . . , n1}. Suppose

direction and intensity of preferences are uncorrelated across respondents. Then, the average net

contribution to t1 from a supporter of t1 is the same as the average net contribution to t0 from an

opponent of t1. Formally, we can write this as

(A1)
1

n1

n1∑
i=1

Bi(t1)−Bi(t0) =
1

n0

N∑
i=n1+1

Bi(t0)−Bi(t1).

for any t1, t0, and i.
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We know from the proof of Proposition 1 that we can write the AMCE as:

(A2) π(t1, t0) =
τ

NK2

N∑
i=1

Bi(t1)−Bi(t0).

Then, we can rewrite expression A2 as

π(t1, t0) =
τ

NK2

(
n1∑
i=1

Bi(t1)−Bi(t0)−
N∑

i=n1+1

Bi(t0)−Bi(t1)

)

From Equation A1, when preference direction and intensity are uncorrelated:

π(t1, t0) =
τ Ei≤n1 [B(t1)−B(t0)]

NK2
(n1 − n0).

Thus, π(t1, t0) is positive if and only if a majority of respondents prefer t1 to t0, or n1 > 1/2.

PROPOSITION 4: When separability is relaxed, the bounds on the fraction of voters who prefer t1

over t0 are wider for any given AMCE.

Proof of Proposition 4. When the separability assumption does not hold, the bounds on the fraction

of voters who prefer t1 to t0 for an AMCE of π(t1, t0), in an experiment with K possible profiles,

and when the attribute of interest can take τ distinct values, are given by

y ∈

[
max

{
1− τ(1− π(t1, t0))− 1

τ − 1− τ2

K2

((⌊
K
2τ −

1
2

⌋) (
K −

⌊
K
2τ −

1
2

⌋)
−
⌈
K
2τ + 1

2

⌉) , 0}

min

{
1 + τ(1− π(t1, t0))

K2(τ − 1)− τ2

K2

((⌊
K
2τ −

1
2

⌋) (
K −

⌊
K
2τ −

1
2

⌋)
−
⌈
K
2τ + 1

2

⌉) , 1}] ,
where b·c and d·e are the floor and ceiling functions respectively.1

Similarly to the proof of Proposition 2, these bounds obtain when both the voters who prefer t1 and

those who prefer t0 give the maximum and minimum net Borda scores to t1 versus t0. The bounds

1The floor and ceiling functions are necessary because of how we define a preference; strictly

more than half of all all-else-equal comparisons. If there is an odd (even) number of all-else-equal

comparisons, then minimally the profiles with the preferred feature are chosen once (twice) more

than those without. The floor and ceiling functions account for this difference.
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in this case are wider because interactions allow for more freedom when constructing preferences.

Below we lay out the arguments for the lower bound. The upper bound is constructed analogously.

For respondents who prefer t1, the maximum possible net Borda score given to t1 versus t0 without

separability is the same as the case with: K2(τ−1)
τ2

. Now consider a respondent who prefers t0.

Without separability, such a respondent prefers profiles with t0 to otherwise identical profiles with

t1 in majority of the cases, but in others they may have a preference for profiles with t1. Specifically,

a respondent who prefers t0 gives the maximum possible net Borda score to t1 versus t0 when her

preferences look like the following:

t1αβγ � t1α′βγ � . . .︸ ︷︷ ︸
bK2τ− 1

2c profiles

� t0α′β′γ � t1α′β′γ � . . . � t0α′β′γ′ � t1α′β′γ′︸ ︷︷ ︸
2dK2τ + 1

2e profiles

� t0αβγ � t0α′βγ � . . .︸ ︷︷ ︸
bK2τ− 1

2c profiles

where again α, β, and γ represent a collection of other features of candidates included in the exper-

iment. In words, this respondent has the minimal distance of one between the profiles with t0 she

prefers to otherwise identical profiles with t1, and the maximal distance of K −
⌊
K
2τ −

1
2

⌋
between

the profiles with t1 she prefers to otherwise identical profiles with t0. To check that for this respon-

dent we have Ψi(t1, t0) < 1
2 , notice there are

⌈
K
2τ + 1

2

⌉
comparisons where she prefers t0 over t1 and⌊

K
2τ −

1
2

⌋
comparisons where t1 is preferred to t0. Thus, the maximum net contribution to t1 of a

respondent who prefers t0 to t1 is
(⌊

K
2τ −

1
2

⌋) (
K −

⌊
K
2τ −

1
2

⌋)
−
⌈
K
2τ + 1

2

⌉
. Notice that for K

τ > 2,

we have
(⌊

K
2τ −

1
2

⌋) (
K −

⌊
K
2τ −

1
2

⌋)
>
⌈
K
2τ + 1

2

⌉
. This means that without separability, a respondent

who prefers t0 to t1 may still contribute more Borda points to t1 than t0.

When we calculate the bounds as in the proof of Proposition 2, we find that

π(t1, t0) =
(ymin)K

2(τ−1)
τ2

+ (1− ymin)
((⌊

K
2τ −

1
2

⌋) (
K −

⌊
K
2τ −

1
2

⌋)
−
⌈
K
2τ + 1

2

⌉)
K2

τ

.

Algebra reveals

ymin = max

{
1− τ(1− π)− 1

τ − 1− τ2

K2

((⌊
K
2τ −

1
2

⌋) (
K −

⌊
K
2τ −

1
2

⌋)
−
⌈
K
2τ + 1

2

⌉) , 0}

It can be confirmed that this is equal to the lower bound in Proposition 2 when K
τ = 2, and strictly

lower when K
τ > 2.

Lemma 3. The AMCE is equivalent to yij1 =
∑

m ∆xijmβm + εij, or an average ideal point.
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Proof of Lemma 3. To show that the estimation of Equation F4 would yield the AMCE, note first

that Hainmueller, Hopkins and Yamamoto (2014) show that the following regression recovers an

unbiased estimate of the AMCE:

yijc = δ + xjmcρk + υijmc

where ρ̂m gives the AMCE for feature m. From the randomization of x, it follows from standard

results that the vector of coefficients β from Equation F4 can be obtained from the separate regression

of the outcome yij1 on each column k of the matrix ∆Xij , e.g. yij1 = ∆xijmβm+ εijm. It is sufficient

to show that ρ̂m = β̂m. The above equation implies ρ̂m =
Cov(xijmc,yijc)

Var(xijmc)
. Similarly, estimating

Equation F4 via least squares without an intercept implies β̂m =
E(∆xijmyij1)

E(∆x2ijm)
. Since E(∆xijm) = 0,

it follows that β̂m =
Cov(xijm1−xijm2,yij1)

Var(xijm1−xijm2) . Consider the numerator.

Cov(xijm1 − xijm2, yij1) = Cov(xijm1, yij1)− Cov(xijm2, yij1)

= Cov(xijm1, yij1)− Cov(xijm2, 1− yij2)

= 2Cov(xijmc, yijmc)

The last line follows from the fact that Cov(xijm1, yij1) = Cov(xijm2, yij2)

Next consider the denominator.

Var(xijm1 − xijm2) = Var(xijm1) + Var(−xijm2)− 2Cov(xijm1, xijm2) = 2Var(xijmc)

which again follows from the randomization of features. It directly follows that β̂m = ρ̂m = AMCE.

Lemma 4. The result in Lemma 3 holds whether we impose a linear or quadratic loss function.

Proof of Lemma 4.

(A3)
Ui(xj1) = −|xj1 − bi|+ ηij

Ui(xj2) = −|xj2 − bi|+ νij
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Assume 0 ≤ bi ≤ 1

(A4)
Pr(yij1 = 1) = Pr(Ui(xij1) > Ui(xij2))

= Pr (ηij − νi2 < |xj2 − bi| − |xj1 − bi|)

Since xj1 and xj2 can take on only two values {0, 1}, it follows xj1 ≤ bi ≤ xj2 or xj2 ≤ bi ≤ xj1

This yields:

(A5) Pr(yij1 = 1) = Pr (ηj1 − νj2 < ∆xj(2bi − 1))

If we were to estimate this via a linear probability model we obtain

(A6)
yij1 = ∆xj(2bi − 1) + ηij − νij

= ∆xjβi + εij

B. Robustness of the AMCE to the Inclusion/Exclusion of Additional Treatments

We provide simple R code to generate a fully observed conjoint experiment based on a set of

preference orderings for a set of voters, and to use this data to estimate AMCEs—both at the

respondent level and over the sample—as described in Section II of the paper. We use this first

to demonstrate that the inclusion of an additional attribute while holding constant all respondents’

preference orderings over the attribute of interest can change the sign of the estimated AMCE. Then,

we show that eliminating certain feature combinations can have the same effect.

1 library(gtools)

2

3 # Function to construct matrix of all possible vote choices

4 construct.vote <- function(ranks) {

5 cands <- names(ranks[[1]])

6 vote <- data.frame(t(combn(cands, 2)))

7 names(vote) <- c("C1", "C2")

8 vote <- rbind(vote, data.frame(C1 = cands, C2 = cands))

9 vote$C1 <- as.character(vote$C1)

10 vote$C2 <- as.character(vote$C2)

11 out <- NULL

12 for (i in c(1:length(ranks))) {

13 choice <- rep(NA, nrow(vote))
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14 for (j in c(1:nrow(vote))) {

15 choice[j] <- ifelse(as.numeric(ranks[[i]][vote$C1[j]]) < as.numeric(ranks[[i]][vote$C2[j]]),

16 vote$C1[j], vote$C2[j])

17 }

18 tobind <- cbind(vote, choice)

19 tobind$type <- i

20 out <- rbind(out, tobind)

21 }

22 return(out)

23 }

24

25 # Function to obtain the AMCE as in Table 4

26 amce.compute <- function(vote.mat, pos, value.baseline, value.amce, weights = NULL, idvar) {

27 df <- vote.mat

28 n.atts <- nchar(df$C1[1])

29

30 df$name1 <- paste0(df$C1, "-", df$C2)

31 df$name2 <- paste0(df$C2, "-", df$C1)

32

33 # generate all possible comparisons

34 combs <- data.frame(C1 = unique(c(df$C1, df$C2)))

35 combs$C1 <- as.character(combs$C1)

36 both.combs <- data.frame(permutations(n = length(combs$C1), r = 2, v = combs$C1, repeats.allowed = TRUE))

37

38 # restrict to value of interest

39 comp1 <- both.combs[substr(both.combs$X1, pos, pos)==value.amce,]

40 names(comp1) <- c("C1", "C2")

41 comp1$name1 <- paste0(comp1$C1, "-", comp1$C2)

42 comp1$name2 <- paste0(comp1$C2, "-", comp1$C1)

43

44 # flip to baseline

45 comp2 <- comp1

46 comp2$C1 <- paste0(substr(comp1$C1, 0, pos-1), value.baseline, substr(comp1$C1, pos + 1,

47 nchar(as.character(comp1$C1))))

48 comp2$name1 <- paste0(comp2$C1, "-", comp2$C2)

49 comp2$name2 <- paste0(comp2$C2, "-", comp2$C1)

50

51 # compute individual AMCEs

52 df1 <- df[,!names(df) %in% "name1"]

53 df2 <- df[,!names(df) %in% "name2"]

54 names(df1)[ncol(df1)] <- names(df2)[ncol(df2)] <- "name"

55 df_all <- rbind(df1, df2)

56 amce.ind <- data.frame(voter = unique(df[,idvar]), amce = NA)

57 for (i in 1:nrow(amce.ind)) {

58 # compute whether C1 wins for every combination

59 tomerge <- df_all[df_all[,idvar]==i, c("name", "choice")]

60 winstats <- merge(comp1, tomerge, by.x = "name1", by.y = "name", all.x = TRUE)

61 win.c1 <- ifelse(winstats$C1==winstats$C2, .5, ifelse(winstats$choice==winstats$C1, 1, 0))

62 names(win.c1) <- winstats$name1

63 # flip and compute

64 winstats <- merge(comp2, tomerge, by.x = "name1", by.y = "name", all.x = TRUE)

65 win.cf <- ifelse(winstats$C1==winstats$C2, .5, ifelse(winstats$choice==winstats$C1, 1, 0))

66 names(win.cf) <- winstats$name1

67 # compute individual amce

68 amce.ind$amce[i] <- sum(win.c1 - win.cf)

69 }

70

71 # normalize all

72 norm <- ((2^n.atts)) * (2^(n.atts - 1))

73 amce.ind$amce <- amce.ind$amce/norm

74

75 # compute mean of the difference between the two
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76 if (is.null(weights)) {

77 amce <- mean(amce.ind$amce)

78 } else {

79 amce <- weighted.mean(amce.ind$amce, weights)

80 }

81

82 return(list(amce = amce, amce.ind = amce.ind))

83 }

84

85 # Example in Table 2

86 ranks2 <- list("1" = c("MR" = 1, "FR" = 2, "MD" = 3, "FD" = 4),

87 "2" = c("MR" = 4, "FR" = 2, "MD" = 3, "FD" = 1))

88 vote.mat2 <- construct.vote(ranks2)

89 amce.compute(vote.mat = vote.mat2,

90 pos = 1,

91 value.baseline = "F",

92 value.amce = "M",

93 weights = c(3/5, 2/5),

94 idvar = "type")

95

96 # Example in Table 5

97 ranks3 <- list("1" = c("MRW" = 1, "MRB" = 2, "FRW" = 3, "MDW" = 4, "FRB" = 5, "MDB" = 6, "FDW" = 7, "FDB" = 8),

98 "2" = c("MRW" = 8, "MRB" = 5, "FRW" = 6, "MDW" = 7, "FRB" = 2, "MDB" = 3, "FDW" = 4, "FDB" = 1))

99 vote.mat3 <- construct.vote(ranks3)

100 amce.compute(vote.mat = vote.mat3,

101 pos = 1,

102 value.baseline = "F",

103 value.amce = "M",

104 weights = c(3/5, 2/5),

105 idvar = "type")

Running the example in lines 85-94 returns the AMCE of -1/20 computed in Table 4:

> amce.compute(vote.mat = vote.mat2,

pos = 1,

value.baseline = "F",

value.amce = "M",

weights = c(3/5, 2/5),

idvar = "type")

$amce

[1] -0.05

$amce.ind

voter amce

1 1 0.25

2 2 -0.50

However, when we add a third attribute, R ∈ {B,W}, as described in Table 5, without changing

the preference orderings of the other two attributes or the distribution of voters, the AMCE changes

sign:

> amce.compute(vote.mat = vote.mat3,

pos = 1,

value.baseline = "F",
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value.amce = "M",

weights = c(3/5, 2/5),

idvar = "type")

$amce

[1] 0.0625

$amce.ind

voter amce

1 1 0.3125

2 2 -0.3125

Similarly, it is straightforward to construct an example where eliminating feature combinations, as

is standard practice in applied work, changes the sign of the AMCE. Consider three types of voters

with preferences as given in Table B1:

V1 V2 V3
M � F F �M F �M
R � D D � R D � R
B �W B �W W � B

Table B1—Preferences over attributes

Assume priorities over attributes as follows. V1: R >> P >> G; V2: P >> R >> G; V3:

P >> G >> R and that each voter prefers candidates with two attributes they like to candidates

with only one attribute they like. With this information we can construct preferences over candidates

for each type as presented in Table B2.

Rank V1 V2 V3

1. MRB FDB FDW
2. FRB MDB FDB
3. MDB FDW MDW
4. MRW FRB FRW
5. FDB MDW MDB
6. FRW MRB FRB
7. MDW FRW MRW
8. FDW MRW MRB

Table B2—Preferences over attributes

Consider a population of five V1s, two V2s, and two V3s. Table B3 gives the AMCE estimate when
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we include the full set of candidate features, and when we exclude each combination of party and

race. Code to replicate this example is included below.

Omitted Features R D
B 0.02 -0.02
W -0.02 0.02

No Omitted Features: -0.01

Table B3—AMCE Estimates of Male, restricting Party-Race feature combinations

106 #### No Omitted Combinations ####

107 ranks4 <- list("1" = c("MRB" = 1, "FRB" = 2, "MDB" = 3, "MRW" = 4, "FDB"= 5, "FRW" = 6, "MDW" = 7, "FDW" = 8),

108 "2" = c("MRB" = 6, "FRB" = 4, "MDB" = 2, "MRW" = 8, "FDB"= 1, "FRW" = 7, "MDW" = 5, "FDW" = 3),

109 "3" = c("MRB" = 8, "FRB" = 6, "MDB" = 5, "MRW" = 7, "FDB"= 2, "FRW" = 4, "MDW" = 3, "FDW" = 1))

110 vote.mat4 <- construct.vote(ranks4)

111

112 #### No RBs ####

113 ranks4a <- list("1" = c("MDB" = 1, "MRW" = 2, "FDB" = 3, "FRW" = 4, "MDW" = 5, "FDW" = 6),

114 "2" = c("MDB" = 2, "MRW" = 6, "FDB" = 1, "FRW" = 5, "MDW" = 4, "FDW" = 3),

115 "3" = c("MDB" = 5, "MRW" = 6, "FDB" = 2, "FRW" = 4, "MDW" = 3, "FDW" = 1))

116 vote.mat4a <- construct.vote(ranks4a)

117

118 #### No RWs ####

119 ranks4b <- list("1" = c("MRB" = 1, "FRB" = 2, "MDB" = 3, "FDB" = 4, "MDW" = 5, "FDW" = 6),

120 "2" = c("MRB" = 6, "FRB" = 4, "MDB" = 2, "FDB" = 1, "MDW" = 5, "FDW" = 3),

121 "3" = c("MRB" = 6, "FRB" = 5, "MDB" = 4, "FDB" = 2, "MDW" = 3, "FDW" = 1))

122 vote.mat4b <- construct.vote(ranks4b)

123

124 #### No DBs ####

125 ranks4c <- list("1" = c("MRB" = 1, "FRB" = 2, "MRW" = 3, "FRW" = 4, "MDW" = 5, "FDW" = 6),

126 "2" = c("MRB" = 4, "FRB" = 2, "MRW" = 6, "FRW" = 5, "MDW" = 3, "FDW" = 1),

127 "3" = c("MRB" = 6, "FRB" = 4, "MRW" = 5, "FRW" = 3, "MDW" = 2, "FDW" = 1))

128 vote.mat4c <- construct.vote(ranks4c)

129

130 #### No DWs ####

131 ranks4d <- list("1" = c("MRB" = 1, "FRB" = 2, "MDB" = 3, "MRW" = 4, "FDB" = 5, "FRW" = 6),

132 "2" = c("MRB" = 4, "FRB" = 3, "MDB" = 2, "MRW" = 6, "FDB" = 1, "FRW" = 5),

133 "3" = c("MRB" = 6, "FRB" = 4, "MDB" = 3, "MRW" = 5, "FDB" = 1, "FRW" = 2))

134 vote.mat4d <- construct.vote(ranks4d)

Computing the AMCEs:

> amce.compute(vote.mat = vote.mat4,

pos = 1,

value.baseline = "F",

value.amce = "M",

weights = c(5/9, 2/9, 2/9),

idvar = "type")

$amce

[1] -0.006944444

$amce.ind

voter amce

1 1 0.1875
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2 2 -0.1875

3 3 -0.3125

> amce.compute(vote.mat = vote.mat4a,

pos = 1,

value.baseline = "F",

value.amce = "M",

weights = c(5/9, 2/9, 2/9),

idvar = "type")

$amce

[1] 0.01736111

$amce.ind

voter amce

1 1 0.15625

2 2 -0.09375

3 3 -0.21875

> amce.compute(vote.mat = vote.mat4b,

pos = 1,

value.baseline = "F",

value.amce = "M",

weights = c(5/9, 2/9, 2/9),

idvar = "type")

$amce

[1] -0.01736111

$amce.ind

voter amce

1 1 0.09375

2 2 -0.15625

3 3 -0.15625

> amce.compute(vote.mat = vote.mat4c,

pos = 1,

value.baseline = "F",

value.amce = "M",

weights = c(5/9, 2/9, 2/9),

idvar = "type")

$amce

[1] -0.01736111

$amce.ind

voter amce

1 1 0.09375

2 2 -0.15625

3 3 -0.15625

> amce.compute(vote.mat = vote.mat4d,

pos = 1,

value.baseline = "F",

value.amce = "M",

weights = c(5/9, 2/9, 2/9),

idvar = "type")

$amce

[1] 0.01736111

$amce.ind
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voter amce

1 1 0.15625

2 2 -0.09375

3 3 -0.21875

C. Bounds on Proportion of Experimental Sample Who Prefer a Feature

We can take advantage of the structure of conjoint data to compute tighter bounds on the propor-

tion of survey respondents who prefer a feature over the baseline than the general bounds derived in

Proposition 2. To do so, we use the insight that when one or more attributes are held fixed at the

same value in a given head-to-head comparison, the respondent makes her decision based only on the

values of the remaining attributes (those that differ from one another), assuming that preferences

are separable—that is, that the choice between any two features is not contingent on the value of

another attribute. Under this key assumption, we can compute tighter bounds as a weighted aver-

age of our standard bounds computed within all subsets of the data, where the subsets are defined

according to which attributes differ and which are the same in the randomly generated candidate

pairings. We recompute π, K, and τ within each subgroup, where K—the number of possible can-

didate profiles—is computed ignoring the attributes that are the same; thus, it is guaranteed to be

smaller than the aggregate K when there is at least one common attribute. Formally, these tighter

bounds are given by: [
S∑
s=1

ns
N

ls(πs,Ks, τ),
S∑
s=1

ns
N
us(πs,Ks, τ)

]
where ls and us are the lower and upper bounds for a subset s, respectively. To illustrate how

we create these subsets of the data, we walk through an example of a conjoint experiment with

four attributes: gender (male, female), party (Democrat, Republican), race (white, Black, Hispanic,

other), and age (young, middle, and old). Supposing we are interested in the effect of gender (female

vs. male), we divide the data into groups based on the three remaining attributes: a group where

the candidate pairs have different values of party, race, and age; three groups in which they have

the same party, race, and age, respectively; three groups with two matched attributes and a third

unmatched (party and race, party and age, and race and age); and a final group with all matched

attributes. Generically, this will yield S = 2A−1 groups, where A is the number of attributes in the

experiment—in other words, the power set of all attributes other than the attribute of interest for

the AMCE. Within each of these subsets, we compute an AMCE and a K that ignores the matched

attributes: for instance, holding fixed party and race, there are six possible candidate profiles (2

values of gender × 3 values of age). Finally, we compute a weighted average of these subset-specific
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Table C1—Bounds on proportion of sample having preferences consistent with AMCE, computed for recent papers

in the top three political science journals.

Paper Estimated effect AMCE (π)
Number of
profiles (K)

Number of
relevant

features (τ)

Bounds on
proportion

with
consistent
preference

Tighter
bounds
under

separability

APSR

Ward (2019)

Proportion of group
comprised of university
graduates on support for
immigration, 30% vs. 0%

0.22 20 4
[0.34, 1.00]
(0.31, 1.00)

[0.36, 1.00]
(0.33, 1.00)

Auerbach and
Thachil (2018)

Broker education on support,
high (BA) vs. none

0.13 1,296 3
[0.20, 1.00]
(0.15, 1.00)

[0.25, 0.94]
(0.19, 0.98)

Hankinson (2018)
Height of building on
homeowners’ support for new
construction, 12 vs. 2 stories

-0.16 6,144 4
[0.00, 0.78]
(0.00, 0.81)

[0.00, 0.77]
(0.00, 0.80)

Teele, Kalla, and
Rosenbluth (2018)

Experience on candidate
support among legislators, 8
years vs. 0 years

0.18 864 4
[0.24, 1.00]
(0.21, 1.00)

[0.25, 1.00]
(0.22, 1.00)

Carnes and Lupu
(2016)

Liberal party label on
candidate support
(Argentina)

-0.10 32 2
[0.00, 0.75]
(0.00, 0.83)

[0.10, 0.60]
(0.04, 0.67)

JOP

Ballard-Rosa,
Martin, and Scheve
(2016)

Tax rate on those earning
<10k on support for plan,
25% vs. 0%

-0.23 38,400 4
[0.00, 0.70]
(0.00, 0.73)

[0.00, 0.70]
(0.00, 0.73)

Mummolo and Nall
(2016)

Driving time to work on
Democrats’ choice of
community to live, 75 vs. 10
minutes

-0.23 3,456 4
[0.00, 0.69]
(0.00, 0.71)

[0.00, 0.45]
(0.00, 0.71)

Mummolo (2016)
Relevant information on
choice to consume, vs.
irrelevant (among seniors)

0.30 6 2
[0.71, 1.00]
(0.66, 1.00)

[0.77, 0.96]
(0.68, 0.96)

Notes: AMCEs may differ slightly from those reported in paper because we reestimate them
without survey weights and only on sample having two candidate profiles per respondent
(unmatched profiles appear in some replication datasets). 95% confidence sets computed using a
block bootstrap are reported in parentheses below the bounds.
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bounds, where the weight is determined by the number of observations in that subset.2

Table C1 reports the bounds in Proposition 2 as well as these tighter bounds for all of the forced-

choice conjoint experiments published in the APSR and the JOP between 2016 and the first quarter

of 2019.3 We construct our bounds for the largest estimated effect presented in each paper (thus

not necessarily the paper’s central finding). To compute uncertainty estimates, we randomly sample

individuals (and thus their complete survey responses) and recompute each bound over 1,000 boot-

strap replicates, taking the normal approximation 95% confidence interval for each bound. Table C1

reports the lower confidence interval on the lower bound and the upper interval on the upper bound

in parentheses below the bounds themselves. In one case (Mummolo and Nall 2016), our tighter

bounding exercise produces upper and lower bounds on the same side of the 0.5 threshold (whereas

the original bounding approach had not), but these gains in precision are lost once we incorporate

the uncertainty of the estimate.

The code below is a simple implementation of the bounds in Proposition 2 in R. Our replication file

contains all code needed to construct Table C1, including code for implementing the tighter bounds

and for bootstrapping all confidence intervals.

1 bounds <- function(pi, K, tau, se_pi = NULL) {

2 # compute lower and upper bound according to proposition 2

3 l <- max(((pi * tau * K) + tau) / ((K * (tau - 1)) + tau), 0)

4 u <- min(((pi * tau * K) + (K * (tau - 1))) / ((K * (tau - 1)) + tau), 1)

5 bounds <- c(l, u)

6 names(bounds) <- c("lower", "upper")

7 # compute 95% confidence set for the bounds

8 if (is.null(se_pi)) {

9 # just return analytic bounds if no standard error is provided

10 output <- bounds

11 } else if (class(se_pi)=="numeric" & length(se_pi)==1) {

12 # delta method-computed standard error (same for upper and lower bound)

13 se <- sqrt(((tau * (K - 1)) / ((K * (tau - 1)) + tau))^2 * se_pi^2)

14 # confidence interval

2Together, the subsets form a partition of the full dataset. In some cases, a subset may be too

small to compute an AMCE, but this will not affect the bounds dramatically precisely because it

only has a small number of observations.

3We also searched the AJPS but there are no forced-choice conjoint experiments appropriate

for our analysis published there during this period. Hemker and Rink (2017) have statistically

significant findings only when they use non-binary scales as outcomes and Huff and Kertzer (2017)

have a binary outcome (labeling an attack as an act of terrorism) that is not a forced choice between

two alternatives.
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15 ci.lower = max(0, l + (qnorm(0.025) * se))

16 ci.upper = min(1, u + (qnorm(0.975) * se))

17 ci <- c(ci.lower, ci.upper)

18 names(ci) <- c("lower", "upper")

19 output <- list(bounds, ci)

20 names(output) <- c("analytic_bounds", "ci_95")

21 } else {

22 # return an error if standard error is entered incorrectly

23 cat("Please provide a numeric value for se_pi \n")

24 stop()

25 }

26 return(output)

27 }

28

29 # example: Ward (2019)

30 bounds(pi = .22, K = 20, tau = 4)

D. Correlations between Direction and Intensity of Preferences in the 2016 ANES

For every question in the 2016 ANES that accommodates such an analysis, we code a direction

variable that has a value of 1 if the respondent takes a clear stance in favor of a position and 0 if they

are opposed.4 We also code a measure of intensity that takes on evenly distributed values over the

interval [0, 1] depending on how many importance categories were included in the question, where 0

is the lowest level of importance and 1 is the highest.5 We then compute two summary statistics.

The first, shown in the first column of Table D1, is the Pearson correlation between the direction

and intensity measures, treating both as continuous variables. The second, shown in the second

column, is the test statistic from a χ2 test of independence of categorical variables. While the χ2

test is most appropriate when treating both measures as categorical, the Pearson correlation has the

advantage of being informative about the direction of the association: a positive correlation means

that supporters assign more importance to the policy than opponents, while a negative correlation

indicates the opposite. We report both tests and the two agree, rejecting the null hypothesis that

directions and intensities are uncorrelated at p < .001 for 17 out of 22 questions.

4We omit respondents who say that they neither favor nor oppose the position, or that they are

unsure, because there is no data on the intensity of these respondents’ preferences.

5For instance, for three importance categories, we code 0 for not important at all, 0.5 for somewhat

important, and 1 for very important. Although this is not the same as the intensity measure that we

defined for Proposition 3 as the absolute difference in Borda scores between the feature of interest

and the baseline, it is another valid way to capture preference intensity and a reasonable proxy for

that quantity.
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Returning to our running example of the preference for women, we see that the divergence between

the preference intensities of supporters and opponents turns out to be more pronounced for espoused

support for feminism than for any other question in the ANES. As Figure D1 shows, self-described

feminists tend to attach much more importance to this identity than self-described “anti-feminists.”

On the left side of Figure D1, we take the sample of ANES respondents who answered the question

“How well does the term ‘feminist’ describe you?” with “Very well” or “Extremely well,”6 and we

plot the proportions of this sample who answered the follow-up question “How important is it to you

to be a feminist?” with “Not at all important,” “A little important,” “Somewhat important,” “Very

important,” and “Extremely important,” respectively. Nearly half of these feminist identifiers re-

port that this issue is very important to them, with approximately another third calling it extremely

important. By contrast, the right side of the figure shows the same distribution for the sample of

respondents who answered the question “How well does the term ‘anti-feminist’ describe you?” with

“Very well” or “Extremely well.” The distribution of this intensity measure for “anti-feminists” is

much flatter than the one for feminists: roughly half of the sample lands between “Not at all impor-

tant” and “Somewhat important,” with the other half reporting “Very important” or “Extremely

important.” Crucially, the sample on the right is those who identify strongly as anti-feminists, not

merely those who fail to identify strongly as feminists, who would naturally be expected not to

care deeply about the issue. Figure D1 thus presents strong empirical evidence in favor of the very

dynamic that drove our stylized running example: there are a majority of voters who prefer men

but care little about the issue, with a minority that prefers women but cares a great deal.

6The other choices were “Somewhat well,” “Not very well,” and “Not at all.”
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Figure D1. Respondents’ Identification with Feminist/Anti-Feminist Labels, by Issue Importance
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E. Relaxing Separability

We have thus far focused on the scenario where voters had unconditional preferences over candidate

features. In this section we explore the implications of altering this definition of preferences for

features to allow for arbitrary interactions. For instance, we allow for the possibility that men are

preferred to women only when the candidate is a Republican and the reverse when the candidate

is a Democrat.7 We derive a summary statistic for aggregate feature preferences that captures this

more complex, and potentially more realistic, preference structure, and show that the bounds derived

in Proposition 2 under separability are always smaller than the bounds we can construct when we

relax separability. Thus, the AMCE is less informative about the fraction of voters who prefer

a feature when preferences over features can interact. Furthermore, we discuss some interpretive

limitations that applied researchers face when they allow respondents to have interactive preferences

over features.

To start, we define an individual feature preference for feature t1 over feature t0 as the

proportion of the time respondent i selects a profile with feature t1 over an otherwise identical

profile with feature t0, over all all-else-equal head-to-head contests that can be constructed from all

values of the other attributes. Formally:

Ψi(t1, t0) =
1

K/τ

K/τ∑
j=1

Yi(xj1, xj0)

where K and τ are defined as before, and thus K/τ represents the number of possible all-else-equal

comparisons for the feature of interest. As in our example, we denote by Yi(xj1, xj0) = 1 if voter i

chooses profile xj1 with feature t1 over an otherwise identical profile xj0 with feature t0 in a pairwise

comparison, and Yi(xj1, xj0) = 0 otherwise.

Note that under separability Ψi(t1, t0) can take only two values, 0 or 1, since voters make the

same choice regardless of the other candidate features. Moreover, with separability, averaging the

individual feature preference over respondents yields the proportion of individuals who prefer t1 to

t0. When we relax separability, Ψi(t1, t0) can take values in the interior of [0, 1]. We now define a

preference for t1 over t0 as having Ψi(t1, t0) > 1/2 in this setting, and we derive the bounds on the

7That is, the feature they prefer is a function of the other features—not their preferred candidate

profile, which is, of course, also a function of the other features in our main example.
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Figure E1. Upper and lower bounds on fraction of people who prefer a binary feature, consistent with an AMCE

of .05, .10, .15, and .25, respectively, as a function of number of possible candidate profiles.
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proportion of respondents who prefer t1 to t0 according to this definition. (See proof of Proposition

4 in Appendix A.)

In Figure E1, we recreate Figure 1, overlaying these bounds (in gray) over the bounds under the

assumption of separability. The jaggedness of the bounds without separability is caused by the ceiling

and floor functions in the equation, but regardless, Figure E1 reveals that our bounding exercise can

no longer offer a practical remedy to researchers if separability is violated; in that case, they quickly

grow to the full [0, 1] interval before K = 16 is reached, even with an AMCE as large as 0.25.

Next, we demonstrate that the proportion of respondents who prefer t1 to t0, or have an individual

feature preference Ψi > 1/2, is indicative of electoral advantage only when separability holds. That

is, without separability, even tight bounds indicating a majority of respondents having Ψi > 1/2

are not sufficient evidence to conclude that candidates with t1 will beat candidates with t0 in most

all-else-equal contests.

We define electoral advantage of t1 over t0 as the difference between the proportion of the time

t1 beats t0 in an all-else-equal contest, out of all possible all-else-equal contests, and one-half:

A(t1, t0) =
1

K/τ

K/τ∑
j=1

1

{(
1

N

N∑
i=1

Yi(xj1, xj0)

)
>

1

2

}
− 1

2

In other words, A(t1, t0) is the difference between the electorate-level analogue of Ψi(t1, t0)—the

proportion of the time an electorate selects t1 over t0 in a simple-majority vote between all-else-

equal alternatives, out of all possible all-else-equal contests—and one-half, and thus it captures the

electoral (dis)advantage enjoyed by a candidate with feature t1 compared to t0.

First, consider the baseline case under separability. Here, whenever a majority of voters prefers t1

to t0, xj1 will beat xj0 in every all-else-equal contest j, and A(t1, t0) will achieve its maximum value

of 1
2 , so we can be confident that t1 carries an electoral advantage over t0. But this is no longer true

when separability fails. We can illustrate this by way of a simple example. Consider a population

of three voters with preferences over gender ∈ {M,F} and party ∈ {D,R, I} as in Table E1. Here,

Ψi(F,M) > 1/2 for two out of three respondents, but A(F,M) = −1/6, indicating an electoral

disadvantage for females despite the fact that the majority prefers this feature.

Finally, we show that without separability, the individual feature preference is potentially unde-

sirable because it does not satisfy transitivity. To see this, suppose there are two ternary variables

of interest, P ∈ {L,C,R} and E ∈ {H,U,G}, and consider a voter whose ranking over candidate
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Rank V1 V2 V3
1. MD MR MI
2. FR FI MD
3. MR MI MR
4. FI FD FI
5. MI MD FD
6. FD FR FR

Ψi(F,M) 2/3 2/3 0

Table E1—Preferences over candidate profiles - Bounds do not indicate electoral advantage without separability

profiles is as follows:

RG � LG � CG � LU � CU � RU � CH � RH � LH

Looking at all-else-equal comparisons, this voter chooses R over L, L over C, and C over R in two

of three comparisons, or Ψi(R,L) = Ψi(L,C) = Ψi(C,R) = 2/3. Thus, voter i prefers R to L, L to

C, and C to R.

F. Structural Interpretation of the AMCE

Consider two candidates c ∈ {1, 2} running in contest j who offer platforms xijc to voter i. A

platform xijc is a vector of policies of length M that fully characterizes a candidate in contest j. Let

bi represent an M length vector of voter i’s preferred policy locations (e.g., their issue-specific ideal-

points), and assume that voters have quadratic utility functions. Thus, voter i’s utility is maximized

when candidate c offers a platform that exactly matches her preferred policy positions, and the loss

she obtains is a function of the distance between the candidate’s policies and her ideal platform. Her

utilities from Candidate 1 and 2’s respective platforms are given by:

Ui(xij1) =− (bi − xij1)2 + ηij1

Ui(xij2) =− (bi − xij2)2 + ηij2

(F1)

While the imposition of quadratic loss may seem restrictive, in Lemma 4 in Appendix A we prove

that our results are identical if we assume an absolute linear loss utility function. Regardless, it
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follows that:

Pr(yij1 = 1) = Pr(Ui(xij1) > Ui(xij2))

= Pr(−(bi − xij1)2 + ηij1 > −(bi − xij2)2 + ηij2)

= Pr(ηij2 − ηij1 < 2(b′i(xij1 − xij2) + x′ij2xij2 − x′ij1xij1)

(F2)

where yij1 is a binary indicator that equals 1 when respondent i chooses Candidate 1 in contest j

and 0 otherwise.

Now consider data generated from a conjoint experiment, where xij1 and xij2 are vectors of

randomized candidate attributes that have been discretized into binary indicators with an omitted

category. Typically, we would estimate Equation F2 with a probit or logit-like regression. Instead

consider a linear model of the form:

yij1 = 2(b′i(xij1 − xij2) + x′ij2xij2 − x′ij1xij1) + ηij1 − ηij2

=
∑
m

(
2bim(xijm1 − xijm2) + x2

ijm2 − x2
ijm1

)
+ ηij1 − ηij2

=
∑
m

(2bim − 1)(xijm1 − xijm2) + ηij1 − ηij2

=
∑
m

βim∆xijm + εij

(F3)

where E(εij) = E(ηij1 − ηij2) = 0 follows from the randomization of xij1 and xij2, and the third line

follows from the fact that x2
ijmc = xijmc, as this is a dummy. The slope, βim = 2bim − 1, gives the

change in probability for individual i of choosing Candidate 1 when Candidate 1 has feature m and

Candidate 2 does not, holding all their other features constant. Implicitly, it also constrains each

element of bi to the [0, 1] line. When bim = 0 (and βim = −1) the manipulation ∆xijm = 1 holding

all other features constant gives a predicted reduction in the probability of choosing Candidate 1

of one-hundred percent. When bim = 1 (and βim = 1), the same manipulation gives a predicted

increase in the probability of choosing Candidate 1 of one-hundred percent. When bim = 1
2 (and

βim = 0), this indicates that voter i is perfectly indifferent.

Finally, averaging over all individuals, we obtain E(βim) as the coefficient from the regression:

yij1 =
∑
m

∆xijmβm + εij(F4)
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where the estimated coefficient β̂m recovers the AMCE for feature m.8

G. Additional Tables and Figures

8For a simple proof, see Lemma 3 in Appendix A.
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Paper Journal Voter Preference Election

Adida et al 2019 PLOS ONE X
Arnesen et al 2019 ES X X
Atkeson and Hamel 2020 PB X X
Auerbach and Thachil 2019 APSR X
Badas and Stauffer 2019 ES X
Ballard-Rosa,Martin, and Scheve 2016 JOP X
Bansak et al 2016 Science X
Bechtel and Scheve 2013 PNAS X
Bechtel et al 2019 BJPS X
Berinsky et al 2018 PB X
Blackman and Jackson 2019 PB X X
Carnes and Lupu 2016 APSR X X
Clayton et al 2019 PB X X
Crowder-Meyer et al 2020 PB X X
de Geus et al 2020 PRQ X
Dynes and Martin 2019 PB X
Goggin et al 2019 PB X
Hainmueller and Hopkins 2015 AJPS X
Hainmueller et al 2014 PA X X
Hainmueller et al 2015 PNAS X
Hankinson 2016 APSR X X
Hansen et al 2015 PB X X
Hemker and Rink 2017 AJPS
Horiuchi et al 2018 PA X X
Horiuchi et al 2018 PSRM
Huff and Kertzer 2018 AJPS
Kirkland and Coppock 2018 PB X X
Leeper and Robison 2020 PB X X
Liebe et al 2018 PLOS ONE X
Martin and Blinder 2020 PB X X
Matsuo and Lee 2018 ES X X
Mummolo 2016 JOP X
Mummolo and Nall 2017 JOP X
Mummolo et al 2019 PB X
Oliveros and Schuster 2018 CPS X
Ono and Burden 2019 PB X
Sances 2018 PB X X
Sen 2017 PRQ X
Shafranek 2019 PB X
Smith 2020 PSRM X X
Smith et al 2018 PA X X
Teele et al 2018 APSR X X
Vivyan et al 2020 ES X X
Ward 2019 APSR X
Wright et al 2015 PB X

Table G1—This table describes our literature review describing 45 conjoint experiments by political scientists

published between 2015 and 2020. The third column indicates if the authors describe their results with respect to

voter preferences. The fourth column indicates if the authors relate their results to outcomes of elections.


