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Abstract

This paper studies a model of collective action in which citizens face re-
peated opportunities to protest against a regime, and observe noisy signals
of the potential gains from attacking at each moment. We depart from the
existing literature by assuming that agents are partially altruistic. This as-
sumption has far-reaching implications. First, citizens can be motivated by
public benefits in addition to private ones. Second, the continuation value of
the status quo influences the citizens’ willingness to protest today. As a result,
a revolt may be triggered by a mere change in expectations about the future.
The same logic can induce a pattern of intermittent attacks, as well introduce
a novel source of inefficiency: a temptation to attack later rather than earlier
when future attacking opportunities are relatively attractive leads to attacks
being inefficiently delayed. Thus, altruistic agents can fall prey to a form of
collective procrastination that lowers social welfare.

1 Introduction

Citizens who take part in mass protests, especially those seeking regime change or
concessions from a non-democratic government, often expose themselves to significant
danger. Collectively, the potential gains from a successful protest can more than
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justify the costs. But each individual protester is unlikely to make a difference, and
if she does, most of the value generated accrues to other citizens. Thus, a selfish
benefit-cost calculus can rarely justify the bulk of individual decisions that translate
into mass participation.

The dilemma faced by potential protesters is thus a classic problem of collective
action. Formal models of protests have typically solved this dilemma in one of two
ways. First, following analogous economic models (e.g., of currency attacks), protest-
ing may be assumed to confer private benefits, which accrue only to participants,
rather than all citizens, in case of a success.1 This approach more plausibly cap-
tures the calculus of protest leaders and organizers than that of the masses. Second,
protesters may be modeled as driven by grievances or expressive “warm glow” ben-
efits which, though plausible, leaves us with a less than fully-specified model, in the
absence of a theory of why certain events and circumstances aggrieve people.2

In this paper, we take a novel approach to modeling protest movements. We
assume that citizens—rather than selfish—are partially altruistic. That is, they value
the well-being of their fellow citizens, though perhaps less than their own. They
may thus protest to contribute to the public good—not to obtain some private or
expressive benefits unavailable to fence-sitters (although our model can accommodate
such benefits).

The model we present is otherwise simple and canonical. We construct a dynamic
global game in which citizens repeatedly choose whether to “attack” a regime, at a
cost. Citizens have imperfect information about the profitability of regime change.
Each citizen can attack any number of times. The game ends when the regime falls,
or after it survives a given number of periods. Success is more likely if more citizens
attack. A larger crowd makes the marginal participant more impactful, so that there
is a coordination motive.

In some ways, the analysis is standard. Information perturbations, combined
with two-sided limit dominance, yield equilibrium uniqueness and sharp predictions:
in each period, citizens attack if their information about the profitability of attacking
is favorable enough. But the addition of altruism to the model flips on its head much
of the conventional logic from existing models of protests.

1This type of benefit is related to the concepts of “selective incentives” (Olson, 1965) or “club
goods” (Buchanan, 1965).

2A third solution is to simply assume the problem away by modeling the protesters as a unitary-
decision maker; see, e.g., Acemoglu and Robinson (2001), Shadmehr (2014).
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In models with either private or “warm glow” benefits, the citizens’ motivation to
attack is proportional to the attack’s probability of succeeding, and rewarding them
with spoils or satisfaction.3 In contrast, in our model, citizens are motivated by their
contribution to the probability of success. For instance, suppose a citizen knows that
the probability of a successful attack is 0.5001 if she participates, and 0.5 if not, in
a population of 10,000. For a selfish citizen chasing private benefits, the incentive
to attack would be 0.5001 times her (potential) private benefit. If there is also a
public benefit, a selfish citizen multiplies its valuation by 0.5001−0.5 = 0.0001 in her
calculation, likely rendering it irrelevant. In contrast, a fully altruistic citizen (who
values the well-being of her fellow citizens as much as her own) would multiply the
public benefit by 0.0001×10,000 = 1 in her calculation, because in the unlikely event
that her participation tips the scales, all citizens receive the public benefit thanks
to her. More generally, as the number of players goes to infinity, a decrease in each
citizen’s probability of being pivotal is offset by an increase in the number of players
who benefit from a potential success. As a result, public motives can remain relevant
for altruistic citizens, even in a large population.

Moreover, since the collective gain from a success is simply the payoff gap between
the status quo and regime change, incentives to attack respond both to the “carrot”
of a better post-revolutionary outcome and the “stick” of a more oppressive status
quo. Hence a mere worsening of the status quo can trigger a protest in our model,
whereas, in a private benefits setting, it would be the size of excludable spoils that is
paramount.

Our main results, however, arise when the model allows for multiple opportunities
to protest. In that case, the distinct logic of altruistic protesting has far-reaching
ramifications: altruistic citizens realize that, by successfully overthrowing the regime
today, they are forfeiting chances to instead overthrow the regime in the future.
In other words, a successful protest robs all citizens of the option value of future
protests. Their calculus must account for this. As a result, they are more likely to
attack today if conditions for an attack are good today or if they are bad tomorrow,
and vice versa; their behavior reflects forward-looking considerations. By contrast,
selfish agents would take the outcome of the protest today as practically outside of
their control, and participate if the odds of success are high, regardless of future

3Unless expressive payoffs are obtained even in case of failure, in which case the probability of
success is irrelevant.
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opportunities. Their actions would thus be divorced from future expectations even
if the agents themselves were forward-looking, as shown by Angeletos, Hellwig and
Pavan (2007) and Little (2017).

An immediate implication is that, in our model, protests may be triggered by
the mere expectation that the status quo will deteriorate if nothing is done, even in
the absence of any material changes in the environment (e.g., the regime’s strength,
the cost of participation, or current flow payoffs). To our knowledge, ours is the
first dynamic model of regime change with many players able to explain this phe-
nomenon, which is remarkably common. For example, the 2019 Hong Kong protests
began in response to a proposed extradition bill that was seen as jeopardizing the
region’s autonomy from mainland China, long before the law could be ratified, let
alone executed; the 2013-2014 Euromaidan revolution was triggered by the Ukrainian
government’s backpedaling in ongoing negotiations aimed at integration with Europe;
the 2013 Gezi Park protests in Turkey were precipitated by the increasingly author-
itarian rhetoric of the country’s prime minister.4 These and other examples do not
readily fit an image of self-interested protesters opportunistically chasing the spoils of
victory, or responding in knee-jerk fashion to material deprivation. They instead sug-
gest citizens who assess the likely evolution of the status quo when deciding whether
to protest today.

The welfare consequences of forward-looking protest behavior are ambiguous. It
is clear why forward-looking protesters may attain better outcomes. For instance,
suppose that the gains from overthrowing the regime are governed by a parameter θ

which strongly increases over time (e.g., because the opposition can groom a better
candidate for the new government if given more time.) Altruistic agents would wait
to attack in later periods when the value of a success is high. Selfish agents, on the
other hand, would attack as soon as θ is high enough that an attack would be focal
today in the absence of any future chances.

Our most surprising result, however, is that when agents are imperfectly altruistic—
that is, they value others’ welfare, but less than their own—the “option value” consid-
erations induced by altruism can lead to excessive and inefficient delay in equilibrium,
a form of collective procrastination. More precisely, giving citizens more opportuni-

4These examples are discussed further in Section 6. Other examples include the 2008 protests
in Argentina against a planned hike on grain export taxes and the 2010–2012 protests in Greece in
response to proposed austerity measures.
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ties to protest in the future, even less attractive ones than the current one, can lower
their equilibrium welfare by inducing a sort of “paralysis of options.” The logic of
this result is related to the intuition behind equilibrium selection in all global games:
in global games, agents can sometimes coordinate on an attack, but they need the
state of the world to be somewhat better than the bare minimum needed to render
an all-out attack profitable. A crowd in a global game thus behaves much like a
person with low motivation or willpower to choose a high-effort action. Offering such
a person an “out” in the form of a second chance can tempt her to procrastinate,
leaving her worse off. Thus an attack may come not when it is most profitable, but
rather when there are no second chances left.

Due to the same logic, the equilibrium generally displays a pattern of intermittent
protest: like waves crashing against the shoreline, citizens eventually coordinate on
an attack, then—if unsuccessful—let several periods pass before trying again, and the
process repeats. These waves are strategic and forward-looking: citizens attack when
the anticipated delay until the next wave crashes is high enough that they become
impatient. Intermittent attacks can also arise in existing models (Angeletos et al.,
2007; Little, 2017), but driven by a different, backward-looking logic: after a failed
attack, citizens know that the regime is strong enough to have survived, and so they
give up on attacking again until enough uncertainty has re-accumulated about the
regime’s changing strength.

The rest of the paper is structured as follows. Section 2 reviews the related
literature. Section 3 presents the baseline model and Section 4 solves it. Section 5
shows how to add private benefits and more general uncertainty to the model, and
considers a variant in which the citizens are fighting to keep a resistance movement
alive rather than attempting to overthrow the regime. Section 6 discusses the results
through the lens of recent protest movements in Hong Kong, Ukraine and Turkey.
Section 7 concludes the paper.

2 Related Literature

To our knowledge, we are the first to consider altruism in a dynamic model of
protests. While the idea that collective action must be motivated by private benefits
is widespread (Olson, 1965), there are settings close to ours for which this frame-
work is known to be inadequate. For instance, rational, instrumental models of voter
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turnout are known to predict unrealistically low levels of turnout (Feddersen, 2004;
Blais, 2000). High turnout in large elections is better explained by models including
“civic duty” (Feddersen and Sandroni, 2006; Coate and Conlin, 2004) or altruistic
motives (Edlin, Gelman and Kaplan, 2007; Jankowski, 2002; Fowler, 2006; Rotem-
berg, 2009; Fowler and Kam, 2007). Protest participation—like voting—is a form of
civic expression, and arguably the closest substitute for voting available to citizens
in a non-democratic society. With the exception of Shadmehr (2021), which focuses
on altruistic protesters in a static setting, whether protesting can be motivated by
similar impulses is an understudied question.

The most popular non-instrumental approach in the protest literature has been to
assume “warm glow” payoffs (Persson and Tabellini, 2009; Egorov and Sonin, 2021).
Our altruism-based approach can be seen as a microfoundation of warm glow: rather
than add a fixed additive term to the players’ payoffs representing moral concerns, we
model how the strength of these concerns would depend on the actual consequences
of a player’s actions.

We follow the literature on regime change in modeling mass protests using the
technical machinery of global games (Carlsson and Van Damme, 1993),5 first ap-
plied by economists interested in coordination games such as bank runs and currency
attacks (Morris and Shin, 1998).

The bulk of the literature on regime change studies static games (Morris and Shin,
2004; Edmond, 2013; Bueno De Mesquita, 2010; Barbera and Jackson, 2020), even
though the intended applications are often dynamic in nature—for example, investors
choose not just whether to run against the currency, but when; protestors can choose
when to demonstrate against the regime, etc. There is also a smaller but growing
literature that explicitly accounts for the dynamics of collective action, albeit with
selfish agents.

Like our paper, Angeletos et al. (2007) models a population of agents who choose
whether to attack a regime of fixed strength in each of many periods. In the first
period, agents play as in a static global game. In the second period, agents infer
that—if the game is still going—the regime must have been strong enough to survive
the attack faced in the first period. This creates common knowledge that the regime’s

5In a global game, players obtain noisy information—for example, about the strength of a currency
or the stability of a regime—and then act simultaneously. The inability to coordinate behavior
perfectly due to slight differences in information typically yields equilibrium uniqueness in static
models.
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strength is above some threshold, which naturally results in equilibrium multiplicity.
In particular, there is always an equilibrium where no attack occurs after the first
period. The paper then shows that, if new information arrives or the regime’s strength
changes over time, repeated attacks are possible once the signal of past survival has
lost its relevance. Little (2017) extends their model to allow for payoffs to vary over
time and for the game to continue with a new regime after a coup.

Another thread of the literature on dynamic attacks considers a single attack,
which agents can join at different times. In this vein, Dasgupta (2007) compares the
uptake of a risky action in a multi-period game to its one-shot counterpart. In a
setting where early in the game agents face higher uncertainty, but also potentially
greater returns, he shows that the option to delay decreases uptake in the first period
relative to the static benchmark. But late uptake compensates for this decrease.
Thus, the option to delay reduces coordination failure.

Relatedly, Shadmehr and Bernhardt (2019) studies a two-player and two-period
model in which both citizens must protest for regime change to occur. A player
who protests in the first period encourages a less optimistic partner to join—but also
risks being the lone protester. Thus, both citizens are tempted to wait for the other
to start a revolution, resulting in a coordination failure. Shadmehr and Bernhardt
compare this to an alternative model where only one of the two players, a vanguard,
can initiate protests. Here, the incentive to free-ride disappears, and the vanguard is
more likely to act than either citizen in the benchmark model.

3 The Model

We model a set N of players who must repeatedly choose whether to “attack”
(protest, mobilize) or not. In our main specification, the set of players is a con-
tinuum: N = [0, 1]. However, to clarify some issues related to the scaling of payoffs
and pivotal probabilities as the population grows, we will also discuss the case of a
finite population in Section 4.

Time is discrete and finite: t ∈ {0, 1, . . . , T}. The payoffs from a successful attack
in a certain period t are governed by a parameter θt ∼ N(µt, σ

2
θ).

The information structure and timing of the game are as follows. At the beginning
of each period t, if the game has not yet ended, Nature draws the value of θt and then
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reveals to each player i a signal xit, where

xit = θt + ϵit,

and ϵit ∼ N(0, σ2
ϵ ). (The random variables θt, ϵit are independent across all players

and periods.)
Each player i ∈ N then simultaneously chooses whether to attack (ait = 1) or

not (ait = 0). These actions result in the regime being overthrown with probability
f(lt) = a0 + a1lt + a2l

2
t , where lt denotes the fraction of the population who attack in

period t. If the regime falls, the players receive some terminal payoffs, to be described
below, and the game ends. With probability 1− f(lt), the game continues on to the
next period. (At the end of period T , the game ends even if the regime survives.) We
assume that f is convex with a0 ≥ 0, a1, a2 > 0, and a0 + a1 + a2 ≤ 1.

Payoffs

We will allow the players’ preferences to reflect some degree of altruism, measured
by a parameter α ∈ [0, 1]. To make this explicit, we will distinguish between each
player i’s hedonic, selfish flow payoff in period t, uit, and her flow utility in period t,
vit, defined as

vit = uit + α
∑
j ̸=i

ujt. (1)

In other words, each player puts weight α on the utility of each other individual
player, and weight 1 on her own utility. For example, α = 0 models completely
self-interested players, while α = 1 models fully altruistic players that consider the
welfare of others just as important as their own, as a social planner would. (Note that
Equation 1 only yields a well-defined utility function in the case of a finite population.
However, the resultant expression for the marginal payoff that players obtain from
attacking—which is the key object of interest—extends in a natural way to the case
of an infinite population. See Section 4 for details.)

The players have a common discount factor δ ∈ (0, 1). We denote i’s discounted
hedonic payoffs from period t onwards by Uit, defined as

Uit =
∑

t≤τ≤T

δτ−tuiτ .
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Hedonic payoffs are as follows. Each agent i who attacks in a period t bears a flow
cost of attacking c > 0 in that period. If the regime falls in period t, then all agents
also receive a one-time payoff θt defined above, and the game ends. If the regime
survives in period t, all agents instead accrue a known status quo flow payoff νt, and
the game moves on to the next period.6 Note that all agents receive either θt or νt,
as appropriate, regardless of whether they attacked in that period.

Our solution concept is Perfect Bayesian Equilibrium.

Assumptions: Interpretation and Discussion

In many ways, our model takes after existing workhorse models of protests in the
global games literature. We depart from the standard assumptions when necessary
to obtain a model that clearly highlights the forces we are interested in. Some of
these departures are worth discussing.

First, we assume that the benefits from a successful revolt are public. Although
there is evidence that both private and public benefits matter in practice (Cantoni,
Yang, Yuchtman and Zhang, 2019), models in this literature typically focus on pri-
vate benefits (Angeletos et al., 2007; Edmond, 2013; Little, 2017). (An exception is
Shadmehr (2021).) In Section 5, we show how our model can be extended to account
for both private and public benefits; the logic of the model carries through so long as
public benefits are present.

Second, we allow for some degree of altruism. This assumption is what keeps pub-
lic benefits relevant in the agents’ benefit-cost calculation as the population becomes
large and, hence, the probability of being pivotal goes to zero. Shadmehr (2021) is
a rare example that also focuses on pivotality, and also assumes that public benefits
scale with the population size.

Third, the payoff from revolution is affected by the state of the world, θt, in
that period, but the probability of a successful revolt, f(lt), is not directly affected
by the state. A natural interpretation is that θt measures a determinant of the
expected outcome after a revolution—for example, the ideology or the competence of
a de facto opposition leader—rather than the regime’s ability to stave off protesters.

6As written, the model assumes that, after period T , there are no more protesting opportunities
and also no more status quo payoffs. We could, however, assume that status quo payoffs νT+1,
νT+2, . . . will keep accruing forever if the regime is still in place by the end of period T . Adding
such “post-terminal” payoffs to the model is equivalent to bundling them into the period-T status
quo payoff, i.e., setting ν̃T =

∑
t≥T δt−T νt.
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This assumption is for simplicity; qualitatively similar results are obtained if there is
uncertainty about the function f , or about other payoff parameters such as νt or c.

It is worth comparing our setup to the two most popular payoff specifications in
global games. First, in many models (Morris and Shin, 2001; Little, 2016), attackers
receive θ + l − 1, while non-attackers receive 0. Our model generates a very similar
specification for the marginal payoff from attacking. But these papers have no concept
of an attack being “successful” or “unsuccessful” in a binary sense. Second, in other
models (Morris and Shin, 1998; Dasgupta, 2007; Angeletos et al., 2007; Shadmehr,
2021; Little, 2017; Shadmehr and Bernhardt, 2019; Edmond, 2013), attackers receive
1 − c if successful and −c if unsuccessful, but are only successful if l ≥ 1 − θ. This
specification is inconvenient for our purposes because it only yields a supermodular
game when pivotality concerns—which are central to our analysis—are absent.

Fourth, we assume that regime change ends the game. This assumption is less
substantively restrictive than it might appear: the payoff θt represents the citizens’
expected continuation utility from a new regime starting in period t + 1. The new
regime could itself face protests if it is unpopular, as in the 2013 Egyptian protests
leading to Morsi’s removal a year after he became president. Such possibilities are all
captured by the payoff θt.

Fifth, the probability of a successful revolt, f(lt), is strictly increasing and strictly
convex in the size of the protest—this is the content of the assumption a1, a2 > 0.
The convexity assumption guarantees supermodularity in the presence of pivotality
concerns, by ensuring that the more other agents protest, the higher is the marginal
impact of an additional protester.7,8 The model is not intractable if we instead assume,
for example, that f is concave—leading to strategic substitutability, as found by
Cantoni et al. (2019)—though the equilibrium strategies will involve some degree of
mixing. We keep to the case of strategic complementarity mainly to make our analysis
comparable to most of the literature, which models protests as coordination games.

Finally, we assume that the state of the world (θt)t is drawn independently across
periods. This contrasts with Angeletos et al. (2007) and Little (2017), in which the
state is fixed over time, or else affected by persistent random shocks. Note, however,

7In a model with no pivotality concerns it is enough to assume that f is increasing.
8Shadmehr (2021) assumes f(lt) to be a step function. In that setting, if success is “easy” in

the sense that a few participants can ensure regime change, more participation leads to a lower
likelihood any individual will be pivotal and thus actions are strategic substitutes. If the threshold
for regime change is high, then actions are strategic complements.
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that our model allows the mean of the state in each period to follow an arbitrary
sequence (µt)t. In Section 5 we allow for general uncertainty and shocks, including
persistent ones, as long as they are commonly observed; the key assumption keeping
our model tractable is that the idiosyncratic uncertainty about θt—which supports
unique equilibrium selection—must be transient. (In our main results, we will focus on
the case of σ2

ϵ small, so it will be substantively unimportant whether the idiosyncratic
shocks are persistent or transient.)

4 Analysis

We solve the game by backward induction from the last period. Suppose that the
regime has survived until the beginning of period T . What is left for the agents
to play is effectively a static coordination game, which can be solved using familiar
techniques from the global games literature.

Let ∆it be an agent i’s marginal payoff from attacking, given a signal observation
xit and expected equilibrium strategies of the other players. In equilibrium, i must
attack if ∆it > 0 and not attack if ∆it < 0.

To see how marginal payoffs should be calculated in this setting, it is instructive
to consider the case of a large but finite population.9 Suppose that N = {1, . . . , n}.
Then the marginal payoff from attacking is

− c+ E

[
(1 + α(n− 1)) (θT − νT )

(
f

(
l̃T +

1

n

)
− f(l̃T )

)
|xiT

]
,

where l̃t =
∑

j ̸=i ajt

n
is the fraction of the population who attacks, assuming that i does

not attack. As n → ∞, both l̃t and l̃t +
1
n

converge to lt, while

(1 + α(n− 1))

(
f

(
l̃t +

1

n

)
− f(l̃t)

)
→ αf ′(lt).

In particular, note that pivotality concerns vanish from the model if and only
if α = 0: in other words, if the agents are even slightly altruistic, they must take
public benefits into account. The reason is that, as the population grows, the impact

9It is preferable not to work directly with a finite population in the main model, because the
finiteness would reintroduce aggregate uncertainty about the distribution of signals even conditional
on the state, which complicates the analysis.
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of a successful revolt on total welfare increases proportionally, while the probability
of a single agent being pivotal decreases proportionally; these two forces offset each
other.10

In the case of a continuous population, then, we define

∆iT = −c+ E [α(θT − νT )f
′(lT )|xiT ] (2)

= −c+ E [α(θT − νT )(a1 + 2a2lT )|xiT ] .

Our first result characterizes the agents’ equilibrium behavior in the last period.

Proposition 1. Assume σ2
ϵ is small enough. Then the period-T subgame has a unique

equilibrium. In this equilibrium, each player i attacks if and only if xiT is at least as
high as a threshold x∗

T (σ
2
ϵ ). Moreover, as σ2

ϵ → 0, we have x∗
T (σ

2
ϵ ) → x∗

T , where

x∗
T =

c

α(a1 + a2)
+ νT .

Two observations are in order. First, when α = 1, the agents are fully altruistic,
and the equilibrium threshold, c

a1+a2
+ νt, coincides with the threshold that would be

chosen by a social planner who wants to maximize the agents’ expected utility. Indeed,
because the agents play a supermodular coordination game, it is always optimal for
the social planner to either have everyone attack (yielding a per-agent hedonic payoff
−c+ (a0 + a1 + a2)(θT − νT ) + νT ) or have no one attack (yielding a0(θT − νT ) + νT );
the break-even point is when θT = c

a1+a2
+ νT .

Second, consider an alternative model in which the agents have full information.
As usual in coordination games with multiple equilibria, there is a range of parameter
values [θ∗, θ∗] such that, if θT lies in this interval, there are multiple equilibria; if it is
higher than θ∗, then all agents must attack; if lower than θ∗, then no one attacks. It
can be shown that [θ∗, θ

∗] =
[

c
α(a1+2a2)

+ νT ,
c

αa1
+ νT

]
.

It follows that the equilibrium threshold in our game, c
α(a1+a2)

+ νT , implies a
strictly higher propensity to protest than the most peaceful equilibrium, but a strictly
lower propensity to protest than either the most combative equilibrium or the social
planner’s solution. This result is a typical prediction in the global games literature.

A further implication, which is key to our main results, is that the agents’ utility
10Edlin et al. (2007); Fowler and Kam (2007); Rotemberg (2009); Loewen (2010) offer similar

arguments in the context of large elections.
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θT

νT

c
a1+a2

+ νT
c

α(a1+a2)
+ νT

Social Planner
Equilibrium

Figure 1: Utility in equilibrium and in the social planner’s solution, assuming f(0) = 0

in the social planner’s solution is a continuous function of the state θT , whereas
their utility in the equilibrium of our model is a discontinuous function of θT : when
the state crosses the threshold c

α(a1+a2)
+ νT , the agents’ equilibrium payoff jumps

upwards, since for values of θ in this neighborhood it was already strictly optimal to
have everyone protest—just not implementable in equilibrium. This is illustrated in
Figure 1. The inability of agents to coordinate on an attack—despite knowing that
they would all be better off if they could—results in a lower payoff than the social
planner’s solution.

Next, we extend the previous arguments to obtain an equilibrium characterization
for the full game. For this purpose, denote by U t+1(σ

2
θ , σ

2
ϵ ) the expected value of any

agent’s hedonic continuation payoffs from period t+1 on, with the expectation taken
conditional on the regime having survived until the end of period t, but before any
information is revealed about θt+1.

Proposition 2. Assume σ2
ϵ is small enough. Then the game has a unique equilibrium.

In this equilibrium, each player i attacks in period t if and only if xit is at least as
high as a threshold x∗

t (σ
2
θ , σ

2
ϵ ). Moreover, as σ2

ϵ → 0, we have x∗
t (σ

2
ϵ , σ

2
θ) → x∗

t (σ
2
θ),

U t+1(σ
2
θ , σ

2
ϵ ) → U t+1(σ

2
θ). And as σ2

θ → 0, we have x∗
t (σ

2
θ) → x∗

t , U t+1(σ
2
θ) → U t+1.

The sequence of thresholds and continuation utilities (x∗
0, . . . , x

∗
T ;U0, . . . , UT ) can be
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found by recursively solving the following system of equations for t = T, T − 1, . . . , 0:

x∗
t =

c

α(a1 + a2)
+ νt + δU t+1; (3)

U t =

−c+ f(1)µt + (1− f(1))
(
νt + δU t+1

)
if µt > x∗

t

f(0)µt + (1− f(0))
(
νt + δU t+1

)
if µt < x∗

t ,
(4)

taking UT+1 = 0.

Thus, in equilibrium citizens may attack in periods when the net current payoff
of regime change, θt − νt, is believed to be high. But profitability of regime change,
while necessary, is not sufficient for an attack to occur. When deciding whether to
attack in a given period, citizens also take into account that a successful attack in
that period would preclude another, possibly more profitable attack in the future, as
reflected by the fact that if the continuation utility from staying in the game, U t+1,
increases, so does today’s attacking threshold, x∗

t .
In the social planner’s solution, a higher continuation payoff always results in a

weakly higher payoff; the social planner chooses to wait only when it is the best option.
But because the agents in our model cannot coordinate on an attack, a higher U t+1

may result in a lower equilibrium payoff. In other words, changes to the environment
which slightly increase the agents’ payoffs given any strategy profile—but discourage
them from protesting on net—may leave them worse off in equilibrium.

To illustrate, suppose that f(l) = 0.5l + 0.5l2 so that in particular f(0) = 0 and
f(1) = 1, i.e., the regime survives for sure if no one protests, and falls for sure if
everyone protests. Suppose, moreover, that µt ≡ µ and νt ≡ 0 are constant, and σ2

ϵ ,
σ2
θ are both very small, so that θt will likely be close to µ in every period. In this

setting, there is no reason for the agents to wait for a “better” moment to attack
(i.e., to wait for a period with higher θt); the socially optimal strategy would be to
attack and overthrow the regime immediately if µ > c—yielding a payoff of µ− c per
agent—or never do so if µ < c—yielding 0. Yet, in equilibrium, not only are agents
less likely to attack in each period (as x∗

t is always at least c
α
> c), but they condition

their actions today on expected future attacks. For instance, assuming µ > c
α
= x∗

T ,
there will be an attack in period T . But then x∗

T−1 = c
α
+ δ(µ − c), which exceeds

µ if α < 1 and δ is close enough to 1: knowing that the regime will be overthrown
tomorrow, the agents procrastinate today. Procrastination is individually rational
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but leads to a lower payoff of δ(µ− c) for everyone, as waiting until tomorrow results
in the agents’ payoffs being discounted with no improvement in the fundamentals.
By the same logic, x∗

T−k =
c
α
+ δk(µ− c) for all k until a value k0 is reached for which

x∗
T−k0

< µ. At t = T−k0, then, the agents attack, knowing that a failure to overthrow
the regime today would lead to a lengthy wait for another (endogenous) opportunity,
and the process repeats for lower values of t. The same logic is illustrated in Figure
2, assuming that f = l+l2

4
, T = 5, µ = 3, c = α = 0.1 and δ = 0.8. In equilibrium,

there are attacks in periods 0, 3 and 5, each with a 50% chance of success, whereas
the social planner’s solution would have the citizens attack in every period.

These examples illustrate the forward-looking logic of intermittent attacks in our
model: because an expectation of an imminent attack reduces incentives to attack
today, if the profitability of attacks is in an intermediate region, attacks must arrive in
waves separated by periods of apparent calm, even if the underlying fundamentals—
the level of discontent or grievances, the state of the economy, and so on—remain
stable. (Of course, when attacks are very profitable, the agents will indeed attack
regardless of future expectations, and when they are unprofitable enough, no one will
attack.) The following corollary provides a general version of this argument.

Corollary 1. Suppose the status quo payoff νt is equal to ν for all periods t < T ,
with νT = ν

1−δ
.11 Then there are thresholds µ0 < µ∗ < µ∗ such that, for σ2

ϵ << σ2
θ

small enough:

(i) If µt = µ > µ∗ for all t, then, in every period, almost everyone attacks.

(ii) If µt = µ < µ0 for all t, then, in every period, almost no one attacks.

(iii) Generically,12 if there is η > 0 for which µt ∈ (µ∗ + η, µ∗ − η) for all t, there
are intermittent attacks: if T is large enough, there are periods in which most
players attack and periods in which almost no one attacks. (If T = ∞, there
are infinitely many periods of both types.)

11This is equivalent to assuming status quo payoffs of size ν for period T and all periods thereafter,
as noted in Footnote 6.

12The statement is true except for a set of sequences (µt)t of Lebesgue measure zero.
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Figure 2: Pattern of attacks when µt lies between µ∗ and µ∗

Moreover

µ0 =
c

α(a1 + a2)
+

ν

1− δ
,

µ∗ =
c

α(a1 + a2)
+

δc

1− δ

a0
α(a1 + a2)

+
ν

1− δ
,

µ∗ =
c

α(a1 + a2)
+

δc

1− δ

[
a0 + a1 + a2
α(a1 + a2)

− 1

]
+

ν

1− δ
.

Finally, Proposition 3 characterizes the comparative statics of the model in a lim-
ited sense. It shows the effects of a marginal change in the parameters—in particular,
µt′ or νt′—on the incentive to attack in any period t ≤ t′, as measured by changes in
the equilibrium thresholds x∗

t .

Proposition 3. Consider the generic case in which µt ̸= x∗
t for all t. Then:

(i) A marginal increase in the current or future status quo payoff increases the
current threshold for attack: ∂x∗

t

∂νt′
> 0 for all t′ ≥ t.

(ii) A marginal increase in the payoff of future regime change increases the current
threshold for attack, but a change in the payoff of current regime change has no
effect on it: ∂x∗

t

∂µt′
> 0 for all t′ > t and ∂x∗

t

∂µt
= 0.

Explicit formulas for the derivatives ∂x∗
t

νt′
, ∂x∗

t

µt′
can be found in the Appendix. The

intuition behind the result is as follows: when the status quo payoff, νt′ , or the regime
change payoff, µt′ , increases in some future period t′ > t, it becomes more attractive to
let the regime survive at time t, for a chance to receive this increased payoff at time t′.
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As a result, the incentive to attack in period t decreases, and x∗
t increases. Similarly,

if νt increases, the players are incentivized to let the regime survive today. On the
other hand, an increase in µt has no effect on x∗

t—but makes players more likely to
attack at time t, since in equilibrium (when information is precise) players attack at
time t whenever µt > x∗

t . The general message, then, is that a more attractive status
quo always deters attacks, while a more attractive payoff from regime change in a
given period encourages attacks then while discouraging attacks in previous periods.

When information is precise, the results in Proposition 3 characterize only latent
changes in the willingness to attack: for example, if µt < x∗

t , then there will not
be an attack at time t, a conclusion left unaffected by any marginal change to the
parameters. If a change to the parameters is large enough, collective behavior will
eventually change discontinuously, and perhaps simultaneously in multiple periods.
For instance, as we increase νt′ , all the thresholds x∗

t for t < t′ will smoothly increase,
up to the point when one of them finally crosses µt from below. At that point, the
players would suddenly switch from attacking the regime at time t to not doing so,
and this expectation may in turn galvanize the players to attack in a previous period
t
′′ , etc.

5 Extensions

In this Section we briefly present several extensions of the model. The first one shows
how the model may accommodate more general forms of uncertainty or informational
shocks that the citizens may face. The second one shows how the results change if
private benefits (i.e., “club goods”) are present in the model in addition to public
benefits. The third one shows how to solve an alternative model in which, in contrast
to the situation in our main model, the protest movement has no hope of overthrow-
ing the regime, but protests only to keep a resistance alive and stave off a state of
permanent repression.

5.1 Generalized Uncertainty

While we assumed, for simplicity and consistency with the literature, that the citizens
face idiosyncratic uncertainty about their payoff from regime change, θt, we would
have obtained similar results had we instead assumed them to face the same kind of
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uncertainty regarding their status quo payoff if the regime survives, νt. In particular,
it would still be the case that, as information becomes more precise, most citizens
would attack in period t if

µt >
c

α(a1 + a2)
+ νt + δU t+1,

and most would refrain from attacking if the reverse strict inequality holds (with
νt now denoting the expected status quo payoff). Qualitatively similar results are
obtained if we instead assume uncertain and time-varying costs of protesting, c, or
impacts of protest behavior, (a0, a1, a2).

Perhaps more importantly, we can allow for very general uncertainty and learning
about future payoff parameters. For example, we can assume that, for each t, µt

and νt are distributed according to some cumulative distribution functions Ft, Gt,
with their realized values being fully revealed by the beginning of period t—but this
information can arrive as a lump sum at time t, or in a previous period, or even grad-
ually over many periods, with all such signals being revealed equally to all citizens.
Because this uncertainty is resolved by time t, it makes no difference for the purpose
of characterizing the citizens’ equilibrium strategies at time t. The only change to our
analysis is that, when calculating a continuation value U t+1, we must write a more
complicated version of Equation (4) taking into account that the parameters µt+1 and
νt+1, the players’ equilibrium actions, and the next period’s continuation value, U t+2,
may take many possible values that we must take an expectation over.

Adding this kind of uncertainty to the model allows us to think about the equi-
librium response to information about future shocks. For example, let f(l) = 2l+l2

8
,

c = 1, δ = 0.8, and α = 4
33

. Assume that µt ≡ 1, but νt depends on the state of the
society, which may be green, yellow, or red. We can think of these as different stages
of democratic backsliding, where green corresponds to the status quo, yellow to the
introduction of bills that will concentrate power in the hands of the incumbent, and
red to after the bill has been ratified. Alternatively, we can think of these colors as
capturing different levels of social strife, where green is peaceful, yellow is tension,
and red corresponds to conflict. Either way, while the state is green or yellow, νt = 0,
whereas νt = ν < 0 in the red state. If the state is green at time t, then, at time
t+1, it will still be green with probability 0.98, or it will turn yellow with probability
0.02. If the state turns yellow in period t, it remains in this state for three periods (t,
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t+1, t+2) and then becomes red forever. Note that the yellow state is not materially
any worse than the green one—it just denotes that citizens are aware of an imminent
slide to the red state.

Suppose that the state turns yellow in period t0. Using Equations (3) and (4),
we can show that citizens will attack in every red period (i.e., from t0 + 3 onwards)
if ν < −10. Moreover, if ν < −20, citizens will also attack in the last yellow period,
t0+2; if ν < −40, they will also attack in period t0+1; and if ν < −80, they will also
attack in period t0, that is, as soon as the state changes to yellow. Of course, citizens
cannot preemptively attack in period t0−1 because they do not know when the state
will turn yellow until they see it; and they will not attack in the green state so long
as ν > −1800. A crucial assumption underpinning this example is that f(1) < 1

(more specifically, f(1) = 0.375): because even an all-out attack is not guaranteed
to topple the regime, and the red state is very costly, the citizens would do well to
begin attacking ahead of time if they are on a path to the red state. The more costly
this state is, the earlier they begin to attack. Only when ν is extremely negative (in
particular, ν < −1800), the citizens attack even in the green state, in an attempt
to dodge a future red state that may not ever materialize. A general lesson from
this example is that, in our model, the citizens may respond proactively to a threat
that the status quo will worsen in the future, or that opportunities to protest may
disappear in the future.

5.2 Private and Public Benefits

For simplicity, our main model assumes that there are only public benefits from
protesting, that is, any payoff from regime change benefits all citizens. We could
instead allow for the coexistence of public and private benefits. Suppose, as before,
that all players receive θt if the regime is toppled at time t, but in this case, protesters
receive an additional payoff ρt > 0 which is commonly known. Then i’s marginal
payoff from protesting at time t would become

∆it = −c+ E
[
α(θt + ltρt − νt − δU t+1)f

′(lt) + ρtf(lt)|xit

]
, (5)

where ρtf(lt) is the expected private benefit received by i, and αltρtf
′(lt) is i’s valu-

ation of the private benefits that i’s participation enables other protesters to receive.
It can be shown that, under the same conditions as in the main model, the game re-
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mains one of strategic complements, so the citizens attack iff xit is above a threshold,
converging to a limit x∗

t when σ2
ϵ is small enough, specifically:

x∗
t =

c

α(a1 + a2)
+ νt + δU t+1 − ρt

[ a1
2
+ 2a2

3

a1 + a2
+

a0 +
a1
2
+ a2

3

α(a1 + a2)

]
. (6)

A derivation of Equation (6) can be found in the Appendix.

5.3 A Model of Fighting to Survive

Consider a variant of the model with the following properties. While the movement
survives, the agents receive flow payoffs θt in every period. If the movement is crushed
in period t, there are no more opportunities to demonstrate in the future, and agents
receive a lump sum νt and the game ends. (Of course, νt can represent a discounted
sum of payoffs.) Demonstrating still costs c and we make the same assumptions as
before regarding altruism. The probability that the movement survives period t is
f(lt) = a0 + a1lt + a2l

2
t .

Then the net payoff of demonstrating for the marginal agent is

−c+ E
[
α(θt + δU t+1 − νt)|xit = x∗

t (σ
2
ϵ )
]
,

where U t+1 is the continuation payoff from arriving at t+ 1 with the movement still
active. Hence, the limit equilibrium cutoff as σ2

ϵ → 0 is now

x∗
t =

c

α(a1 + a2)
+ νt − δU t+1. (7)

As in the main model, agents are reluctant to protest relative to the social plan-
ner’s solution (because they don’t fully internalize the benefits), which means that
a marginal change in the future parameters which shifts the equilibrium from not
attacking to attacking in a future period will discontinuously increase the players’
payoffs. But, in this variant of the model, such an increase in continuation utilities
will actually encourage more protests today, since the citizens are more likely to
accrue that higher continuation utility precisely if they do protest today. (Mechan-
ically, this appears in Equation (7) as a negative sign in front of the term δU t+1:
an increasing continuation utility from survival lowers the threshold x∗

t for protest-
ing today.) More generally, expectations of future agitation reinforce, rather than
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discourage, incentives to fight today.
The logic leading to intermittent protests in the main model is then reversed,

leading instead to bang-bang solutions. For example, then, if we assume νt ≡ 0,
instead of there being a range [µ∗, µ

∗] of protest payoffs leading to intermittent attacks,
there is a single threshold µ∗ = c

α(a1+a2)
such that, if µt < µ∗ for all t, almost nobody

protests in each period, while if µt > µ∗ for all t, most citizens protest in each period.

6 Discussion

Our model of protests fueled by altruistic motives makes several concrete predic-
tions that differ markedly from those made by existing models of protests. We now
discuss these contrasts is more detail, both in abstract terms and in the context of
contemporary protest movements.

6.1 Theoretical Implications

Some key takeaways of our analysis are the following. In our model, citizens protest
only when conditions are quite favorable: their threshold for attacking is higher than
the social planner’s. Information about the future—about chances to take action,
what will happen if nothing is done, and so on—affects current behavior: the bleaker
the future looks, the more likely protests are today. Because an expectation of future
attacks undermines current incentives to protest, intermittent attacks are likely.

As noted in the Introduction, the canonical models of protests as coordination
games (Morris and Shin, 2004; Angeletos et al., 2007; Little, 2017) assume that the
players are driven by private benefits (i.e., payoffs that are only obtained by partici-
pants in a successful attack), and that there are no altruistic concerns (i.e., α = 0). It
is pedagogically useful to provide a model with these key features within our frame-
work for comparison. (The conclusions we draw from our “selfish” model match those
of the canonical models in the literature.)

To this end, set α = 0 in Equation (5), yielding ∆it = −c + E[ρtf(lt)|xit], and
assume idiosyncratic uncertainty about the value of ρt, e.g., ρt ∼ N(ρt, σ

2
ρ) and xit =

ρt + ϵit. When information is precise (as σ2
ϵ → 0), this leads to a limit cutoff of the

form
x∗
t =

c

a0 +
a1
2
+ a2

3

.
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Note that the continuation utility, U t+1, is nowhere present in this expression: agents
driven by private motives ought to act as if myopic, even when they are forward-
looking. The reason is that selfish, atomistic agents must disregard the negligible
chance that their actions will change the outcome of a collective endeavor. As a result,
information about the future becomes irrelevant in the selfish model of protests.

Although selfish protesters are less motivated to act than a social planner would
like in a static setting, they may be inefficiently slow or quick to act in a dynamic
setting, precisely because they disregard the future in their calculations. For example,
in the context of an improving environment (µt, νt increasing over time) selfish citizens
might unnecessarily “jump the gun,” chasing a short-term payoff—while they might
fail to react to an approaching catastrophe (µt, νt sharply decreasing) if current
conditions to attack are not tempting enough.

Finally, our simple “selfish model” contains no mechanism leading to intermittent
attacks (for example if ρt is constant over time). Existing models (Angeletos et al.,
2007; Little, 2017) recover this possibility by assuming that the state of the game is
somewhat persistent (i.e., a higher-than-expected ρt is a signal of higher ρt′ in the
future) but not directly observed, even after the fact. In that context, the linkage
across periods is that after a failed attack, citizens know that the regime is strong
enough to have survived. This negative signal discourages further attacks until enough
uncertainty re-accumulates about the regime’s changing strength. In other words, the
logic behind waves of protest is informational and backward-looking, in contrast to
the strategic, forward-looking logic of our model.

6.2 Examples

We can now compare how either framework would conceptualize the key events of
some recent protest movements. Let us begin with the Hong Kong protests, sparked
by the February 2019 introduction of a proposed bill that would have allowed extra-
ditions to mainland China.13 In June, when the bill would have been discussed at
the Legislative Council (Purbrick, 2019), the protests peaked, leading to clashes with
police. Further protests followed, now against the bill, the police crackdowns and
the government’s condemnation of the protests as riots. The bill was then suspended

13https://www.nytimes.com/2019/06/09/world/asia/hong-kong-extradition-protest.
html
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indefinitely.14 Crowds peaked at as many as two million participants. Pro-democracy
candidates, previously a minority, captured over 80% of District Council seats at the
November 2019 local elections.15 Protesters described being motivated by a sense that
Hong Kong faced a do-or-die fight for its future, saying to the media: “If we don’t
succeed now, our freedom of speech, our human rights, all will be gone.”16 Newspa-
pers struck a similar tone, with headlines such as “The End of Hong Kong is Almost
Here.”17 The conflict echoed massive protests in 2003 in response to a proposed
national security bill, as well as the 2014 Umbrella Revolution, which condemned a
proposal to implement democratic elections but only between candidates selected by a
pro-Beijing committee. These explosions of dissent punctuated a rising collective un-
ease with the mainland’s attempts to encroach on Hong Kong’s autonomy, described
as “the political ground simultaneously shifting and shrinking beneath their feet,” all
this against the backdrop of a ticking clock, as the terms of the 1997 Sino-British
Joint Declaration that delineates the “one country, two systems” framework would
formally expire in 2047.18 Finally, in June of 2020, the mainland National People’s
Congress, bypassing the local government, imposed a national security law which
criminalized dissent in Hong Kong. Described by a Beijing official as “a sharp sword
hanging over a minority of people who endanger national security,”19 the law had an
immediate chilling effect on protests and led to the disbandment of pro-democracy
parties, raids on media offices, and mass arrests of activists and primary organizers.20

It is worth highlighting three key facts. First, the 2003, 2014, and 2019 protests all
began in response to proposed bills or reforms, which had not yet had any material
consequences but which could be taken as signs that the future and autonomy of
Hong Kong were quickly deteriorating. In other words, current parameters θt, νt, ct,
ft were not affected by the proposed bills; what fell was the perceived continuation
value δU t+1 offered by the status quo. Thus, citizens demonstrated forward-looking
protest participation. (A similar logic is encapsulated in the chilling slogan used by

14https://www.nytimes.com/2019/06/16/world/asia/hong-kong-protests.html
15https://www.nytimes.com/2019/11/24/world/asia/hong-kong-election-results.html
16https://www.reuters.com/article/us-hongkong-protests-radicals/now-or-never-

hong-kong-protesters-say-they-have-nothing-to-lose-idUSKCN1VH2JT
17https://foreignpolicy.com/2019/05/16/the-end-of-hong-kong-is-almost-here/
18https://time.com/5786776/hong-kong-joshua-wong-future-homeland/
19https://www.scmp.com/news/hong-kong/politics/article/3091241/national-

security-law-chinese-president-xi-jinping-signs
20https://www.nytimes.com/2021/01/05/world/asia/hong-kong-arrests-national-

security-law.html
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Taiwanese protesters: “Today’s Hong Kong, tomorrow’s Taiwan.”21) Second, even
though all citizens had common knowledge that the promise of “one country, two
systems” would expire in 2047, it took concrete threats that the system would be
subverted ahead of schedule, and imminently, to spur them to act. That is, citizens
arguably showed signs of collective procrastination, as their strongest attempts at
extracting concessions through mobilization took place when the government had
already shifted towards a hard-line approach, with Xi Jinping having made bold
moves to centralize authority and minimize internal dissent in China throughout the
2010s. Third, protests grew in response to police brutality, which could signal that c
was higher than expected, but also be a further sign that the worst was yet to come,
and so the time to act was now.

Thus, through the lens of our model, we can see the protests as an increasingly
desperate resistance which responded to future threats but only when the prospect of
disaster became imminent. In contrast, to explain the 2019 surge in protest behavior,
models of citizens driven by private benefits would need to allege an increase in private
benefits from success, ρt; a decrease in the cost of protesting, ct; or a weakening of the
regime (ft shifting upwards) which made it a tempting target. While private benefits
may well explain the behavior of leaders and activists, it cannot reasonably explain the
participation of millions of people, and the other explanations run counter to the facts
(as the protesters faced a regime that had dug in its heels and was willing to respond
with violence). Finally, though in a coordination game some idiosyncratic event could
always trigger collective action by shifting the players’ “focal point,” this explanation
would chalk the consistent response to threatening legislation up to coincidence. In
particular, in these models, there is no avenue for continuation utilities to play a
role, even if individual citizens are rational and forward-looking. Finally, while one
may plausibly explain the observed protest behavior as a pure emotional response
to grievances (Passarelli and Tabellini, 2017; Gibilisco, 2021; Correa, Nandong and
Shadmehr, 2021), this explanation is incomplete without a model of why certain
events aggrieve people.

The 2014 Euromaidan revolution in Ukraine is another recent example of an im-
pactful protest movement that we can examine through the lens of our model. After
years of negotiations with the European Union and promises of European integration,
the Yanukovych administration announced in November of 2013 that it was suspend-

21https://foreignpolicy.com/2014/08/19/todays-hong-kong-tomorrows-taiwan/
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ing plans to sign a broad political and economic association agreement with the EU,
only a week before the scheduled signing. Instead, Ukraine would seek closer ties
with Russia, which had threatened retaliatory trade sanctions in response to the EU
deal.22 Protesters gathered the same day, angry that their hopes to finally escape the
Russian sphere of influence—to no longer live in “a post-Soviet barrack temporarily
repainted in yellow and blue”—were quickly vanishing.23 Ukraine failed to sign the
EU agreement as scheduled, even as both sides claimed that a deal was still on the
table.24 The protests grew in number and scope of demands, and turned into riots
after the government responded with a violent crackdown.25 The situation worsened
further after the government passed a package of draconian anti-protest laws in Jan-
uary,26 and reached its nadir in February, with over 100 protesters being killed by
police amid escalating clashes. Soon, widespread desertion among demoralized police
forces forced Yanukovych to flee to Russia.27 Again, a pattern emerges of citizens
protesting in response to an expectation of a worsening future (or a dashed hope
of improvement), after years of inaction despite a bleak outlook, and strengthening
their resolve in the face of violence and draconian measures signaling a turn towards
dictatorship.

A similar set of circumstances spurred the Gezi protests in Turkey in the summer
of 2013. The increasingly authoritarian style of Erdogan drove millions into the streets
out of concern that if unchecked, the country would soon be overtaken by the “creeping
political authoritarianism” (Özel, 2014). The government had already curbed the
powers of two of the only remaining checks on its power: the constitutional court
(Özbudun, 2014) and the media (Kocak and Kıbrıs, 2022). In the period leading up
to Gezi, the government restricted the sale of alcohol and passed other bills limiting
various freedoms of people living in Turkey—corresponding to a slight decline in

22https://www.nytimes.com/2013/11/22/world/europe/ukraine-refuses-to-free-ex-
leader-raising-concerns-over-eu-talks.html

23https://www.nytimes.com/2013/11/27/world/europe/protests-continue-as-ukraine-
leader-defends-stance-on-europe.html

24https://www.reuters.com/article/us-ukraine-eu/eu-says-door-remains-open-to-
ukraine-as-unity-cracks-idUSBRE9BE05120131216

25https://www.nytimes.com/2013/12/02/world/europe/thousands-of-protesters-in-
ukraine-demand-leaders-resignation.html

26https://www.washingtonpost.com/world/in-ukraine-protesters-appear-to-be-
preparing-for-battle/2014/01/20/904cdc72-81bd-11e3-9dd4-e7278db80d86_story.html

27https://www.nytimes.com/2014/02/24/world/europe/as-his-fortunes-fell-in-
ukraine-a-president-clung-to-illusions.html?_r=1
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contemporaneous νt (Özbudun, 2014). But what was a bigger influence on many
protesters’ decisions to turn out was the shifting style of Erdogan and his government
and the sense that the worst was yet to come—a large decline in δU t+1. Before
the Gezi protests, a government agency dropped the phrase “Republic of Turkey,”
which was interpreted as paving the way for a move away from democracy. Such
fears were compounded when some Republic Day celebrations were banned. In an
Islamist turn that accompanied the alleged democratic backslide, artists and public
intellectuals were sentenced to jail for “insulting the religious beliefs” of the society,
and members of the governing party decried public displays of affection and called
for the creation of single-sex beaches. Another symbolic move by the government
was naming a public project after Selim the Grim, a move broadly interpreted as
an insult to Turkey’s large Alevi minority because of the historical massacre during
his rule (Yörük, 2014). Erdogan’s language also took an increasingly exclusionary
and dismissive tone towards anyone who wasn’t Sunni and pious. He variously called
anybody who did not fit his image of an ideal citizen “marginals,” “thugs,” “looters,”
or “drunkards” (Göle, 2013). His increasingly aggressive and insulting words made it
clear to everybody else that soon they would not feel welcome in their own country.

In response to fears that civic freedoms would continue to shrink at an increasing
rate if the government went unchallenged, activists started to protest more often and
in greater numbers even before Gezi. They were met with increasing use of excessive
force by the police—an increase in ct. Things came to a head on May 28, 2013 when a
few dozen peaceful protesters organizing a sit-in at Gezi Park were cleared with tear
gas and pepper spray. This was a wake up call for others in Turkey that one of the last
remaining outlets for political expression was all but taken away. What followed were
the largest anti-government protests in the history of the Turkish Republic. Thus,
Gezi was in large part prospective—protesters were responding not only to what the
regime had done, but also to what it signaled it would do. Ultimately, these protests
failed to change the regime yet succeeded in delaying—but not preventing—Turkey’s
democratic backslide.

7 Conclusions

In this paper we developed a dynamic model of protests in which citizens are par-
tially altruistic, and hence may choose to act even if the benefits from regime change
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accrue to all citizens, including non-participants. Our model shows that altruistic
citizens—unlike selfish ones—face pivotality concerns: they care about the (minus-
cule) probability that their participation will change the outcome, not just the prob-
ability that they will get to share in the spoils. In a dynamic context, this implies
that their willingness to protest responds not just to contemporaneous benefits and
costs, but also to the future ramifications of regime change or its absence. In par-
ticular, altruistic citizens may protest in response to an event that increases the cost
of protesting if it also paints a bleak picture of the future, as is the case with police
crackdowns or authoritarian measures. Because an expectation of future collective
action makes present collective action less urgent, and vice versa, spikes in social
turmoil are self-limiting and may arrive in waves, even if the underlying material and
social conditions are stable over time. Moreover, because partially altruistic citizens
act only when collective action is socially beneficial by a wide enough margin, the
mere existence of future chances to act may tempt them to drag their feet today,
leaving them worse off. However, if the goal of collective action is just to keep a
movement alive, then future action encourages present action, leading to a pattern of
either sustained action or disintegration of the movement.

The dynamic encouragement and discouragement effects that are central to our
analysis are absent from models of repeated protests driven by private benefits.
Within our theory, they are the source of novel predictions which, in our view, trans-
late into more natural conceptualizations of many protest processes. (Though we
discussed three prominent examples, the emergence of protests in response to nega-
tive expectations and state violence appears to be general phenomenon.) In assuming
limited altruism, our aim is to build a parsimonious model that keeps ad hoc assump-
tions to a minimum while capturing, in some form, notions such as public-mindedness,
grievances, and other moral considerations that undeniably play a role in civic be-
havior.

The model is flexible and allows for many extensions besides the ones covered
in the paper. One salient question concerns government manipulation: if indeed
collective action is vulnerable to a form of collective “limited willpower,” how would a
government shape payoffs or beliefs over time in order to stave off or defuse protests?
For example, the government may increase clientelistic transfers when the threat
of revolt spikes, or promise to hold new elections as an alternative to immediate
resignation.
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A more challenging direction is to enrich the informational environment of the
model. For instance, the government may have private information about its strength
or its willingness to repress dissent, while citizens may have private information about
their level of dissatisfaction. Signaling concerns would then arise: citizens may mobi-
lize to communicate, rather than just to overthrow the government, and the govern-
ment may repress as a show of force or resolve.

Another possible avenue for future work is to translate our partial altruism frame-
work to model other examples of civic behavior, such as voting, deliberation, and
campaigning activity. In these domains, there is also a tension between observations
that citizens are more engaged than rational models would predict, yet still strategic
(in the sense that, for example, some voters will stop supporting a candidate with no
chance to win) in a way that defies purely emotional or expressive explanations. Our
modeling approach provides a potential way to bridge this gap.
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A Appendix

Proof of Proposition 1. First, we note that the game is supermodular in actions, i.e.,
if the other players’ strategies change so that they are more likely to attack than
before, then the incentive to attack of any player i increases. More formally, denote
j’s strategy in period T by AjT , the set of realizations of xjT for which j attacks. Let
(AjT )j∈[0,1], (A′

jT )j∈[0,1] be two strategy profiles such that AjT ⊆ A′
jT for all j. Let lT ,

l′T be the equilibrium proportion of attackers under each strategy profile (these are,
of course, random variables). Then it is clear that lT ≤ l′T . It follows immediately
from Equation 2 that ∆iT (xiT ) ≤ ∆′

iT (xiT ) for all i, xiT .
Supermodularity in actions implies the existence of a greatest equilibrium and a

smallest equilibrium (Milgrom and Roberts, 1990). Second, we will show that both
of these equilibria are symmetric and in threshold strategies. Because the extremal
equilibria can be obtained by infinitely iterating the agents’ best-response functions
(starting with a strategy profile in which everyone always attacks, or no one ever
does, both of which are symmetric and in threshold strategies), it is sufficient to show
that the best response to a symmetric threshold strategy profile is another symmetric
threshold strategy profile. In other words, we want to show that if all agents j ̸= i

attack iff xjT ≥ x∗, then i’s incentive to attack is strictly increasing in xiT .
More formally, let ∆iT (x, x

′, σ2) be the marginal payoff from attacking for agent i
when she observes xiT = x; all other agents j attack iff xjT ≥ x′; and σ2

ϵ = σ2. Then
we want to show that ∆iT (x, x

′, σ2) is strictly increasing in x for all x′, σ2. Note that
f ′ is strictly increasing, and lT is a strictly increasing (and deterministic) function of
θT , as in fact

xjT ≥ x′ ⇐⇒ ϵjT
σϵ

≥ x′ − θT
σϵ

,

implying lT = Φ
(

θT−x′

σϵ

)
. Then α(θT −νT )f

′(lT ) is a deterministic, strictly increasing
function of θT . Then the claim follows from the fact that the conditional distribution
of θT given xiT is strictly FOSD-increasing in xiT , as θT |xiT ∼ N

(
σ2
ϵµT+σ2

θxiT

σ2
θ+σ2

ϵ
,

σ2
θσ

2
ϵ

σ2
θ+σ2

ϵ

)
(see DeGroot, 1970, Theorem 9.5.1).

In addition, note that α(θT − νT )f
′(lT ) ∈ [α(θT − νT )a1, α(θT − νT )(a1 + 2a2)], so

any x which is a best-response threshold for i to some strategy profile for the other
players must satisfy E(θT |xiT = x)− νT ∈

[
c

α(a1+2a2)
, c
αa1

]
; hence any such x must lie
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in a compact interval I, namely[(
c

α(a1 + 2a2)
+ νT

)(
1 +

σ2
ϵ

σ2
θ

)
− σ2

ϵ

σ2
θ

µT ,

(
c

αa1
+ νT

)(
1 +

σ2
ϵ

σ2
θ

)
− σ2

ϵ

σ2
θ

µT

]
.

Finally, we show that there is a unique symmetric threshold strategy equilibrium,
which implies that the greatest and smallest equilibria coincide, and hence that there
are no other equilibria (Milgrom and Roberts, 1990). Formally, what we will show
is that, for σ2

ϵ small enough, ∆iT (x, x, σ
2
ϵ ) is continuous and strictly increasing in x,

so there must be a unique x∗(σ2
ϵ ) for which ∆iT (x, x, σ

2
ϵ ) = 0, as required. Denote

θ̃ = θ̂ +
σ2
θ

σ2
θ+σ2

ϵ
x, where θ̂ ∼ N

(
σ2
ϵµT

σ2
θ+σ2

ϵ
,

σ2
θσ

2
ϵ

σ2
θ+σ2

ϵ

)
is independent of x. Then θ̃ has the

same distribution as θT conditional on xiT = x. We can then write

∆iT (x, x, σ
2
ϵ ) = −c+ E

[
α(θ̃ − νT )

(
a1 + 2a2Φ

(
θ̃ − x

σϵ

))]
∂∆iT (x, x, σ

2
ϵ )

∂x
= αE

[
σ2
θ

σ2
θ + σ2

ϵ

(
a1 + 2a2Φ

(
θ̃ − x

σϵ

))
− σϵ

σ2
θ + σ2

ϵ

(θ̃ − νT )2a2ϕ

(
θ̃ − x

σϵ

)]
,

where θ̃−x
σϵ

= θ̂
σϵ

− σϵ

σ2
θ+σ2

ϵ
x ∼ N

(
σϵ

σ2
θ+σ2

ϵ
(µT − x),

σ2
θ

σ2
θ+σ2

ϵ

)
. Clearly ∆iT (x, x, σ

2
ϵ ) and

∂∆iT (x,x,σ2
ϵ )

∂x
are continuous on the domain R× (0,+∞), with continuous extensions to

R× [0,+∞). In particular, we can extend ∂∆iT (x,x,σ2
ϵ )

∂x
like so:

∂∆iT (x, x, 0)

∂x
:= αE [a1 + 2a2Φ (z)] = α(a1 + a2) > 0,

where z is a random variable with distribution N(0, 1), and E(Φ(z)) = 1
2

due to the
symmetry of the normal distribution. As ∂∆iT (x,x,σ2

ϵ )
∂x

is continuous on I × [0, 1], it is
also uniformly continuous on this set by the Heine-Cantor theorem. Then there is
σ2
ϵ > 0 such that, if σ2

ϵ < σ2
ϵ , |

∂∆iT (x,x,σ2
ϵ )

∂x
− ∂∆iT (x,x,0)

∂x
| < α(a1 + a2) for all x ∈ I, so

that ∂∆iT (x,x,σ2
ϵ )

∂x
> 0 for x ∈ I. This implies that ∆iT (x, x, σ

2
ϵ ) is strictly increasing,

as we wanted.
Finally, to find x∗

T , we note that

∆iT (x, x, 0) = −c+ α(x− νT )(a1 + a2),

which vanishes only at c
α(a1+a2)

+ νT . By continuity, any point of accumulation of
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x∗(σ2
ϵ ) as σ2

ϵ → 0 must solve the equation ∆iT (x, x, 0) = 0, i.e., it must equal c
α(a1+a2)

+

νT . Because the image of x∗(σ2
ϵ ) is contained in a compact interval, this implies that

x∗(σ2
ϵ ) −−−→

σ2
ϵ→0

c
α(a1+a2)

+ νT =: x∗
T , as we wanted.

Proof of Proposition 2. The marginal payoff from attacking in period t is given by
the expression

∆it = −c+ E
[
α(θt − νt − δU t+1)f

′(lt)|xit

]
in the general case. Under the assumption that f is quadratic this boils down to

= −c+ E
[
α(θt − νt − δU t+1)(a1 + 2a2lt)|xit

]
.

By the same argument as in Proposition 1, for σ2
ϵ small enough, this game has a

unique equilibrium, which is symmetric and in threshold strategies. In fact, this game
is in a sense equivalent to the game from period T : if we denote θ̃ = θt − U t+1 ∼
N(µt−U t+1, σ

2
θ), then the stage game played in period t is equivalent to the one-shot

game with µ̃ = µt − U t+1.
To characterize the sequence of thresholds x∗

t and expected continuation payoffs
U t, denote i’s marginal payoff from attacking by ∆it(x, x

′, σ2
ϵ , σ

2
θ) if she sees xit = x

and other players attack iff xjt ≥ x′. By the same argument as in Proposition 1, the
function ∆it(x, x, σ

2
ϵ , σ

2
θ), with domain R × (0,+∞) × (0,+∞) admits a continuous

extension to R× [0,+∞)× (0,+∞), given by:

∆it(x, x, 0, σ
2
θ) = −c+ α(x− νt − δU t+1)(a1 + a2),

and x∗
t (σ

2
θ) is the unique value of x that solves the equation

0 = −c+ α(x∗
t (σ

2
θ)− νt − δU t+1)(a1 + a2),

which implies Equation 3, as in fact x∗
t (σ

2
θ) is constantly equal to x∗

t for all σ2
θ .

As for Equation 4, for general values of σ2
ϵ and σ2

θ , let Ut(x, σ
2
ϵ , σ

2
θ) be the expected

continuation hedonic utility in equilibrium of an agent i starting at time t, conditional
on seeing xit = x, and U t(σ

2
ϵ , σ

2
θ) be i’s expected continuation hedonic utility before
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seeing xit (both of which, by symmetry, are the same for all agents). Then we have

Ut(x)(σ
2
ϵ ,σ

2
θ) = −c1{x≥x∗

t } + E
[(
θt − νt − δU t+1(σ

2
ϵ , σ

2
θ)
)
f(lt(θt))|xit = x

]
+ νt + δU t+1(σ

2
ϵ , σ

2
θ)

U t(σ
2
ϵ , σ

2
θ) = −cΦ

(
µt − x∗

t√
σ2
ϵ + σ2

θ

)
+ E

[(
θt − νt − δU t+1(σ

2
ϵ , σ

2
θ)
)
f(lt(θt))

]
+ νt + δU t+1(σ

2
ϵ , σ

2
θ)

U t(σ
2
ϵ , σ

2
θ) = −cΦ

(
µt − x∗

t√
σ2
ϵ + σ2

θ

)
+ E

[(
θt − νt − δU t+1(σ

2
ϵ , σ

2
θ)
)
f

(
Φ

(
θt − x∗

t

σϵ

))]
+ νt + δU t+1(σ

2
ϵ , σ

2
θ).

As σ2
ϵ → 0, U t(σ

2
ϵ , σ

2
θ) converges to

U t(σ
2
θ) = −cΦ

(
µt − x∗

t

σθ

)
+ E

[(
θt − νt − δU t+1(σ

2
θ)
)
f
(
1{θt>x∗

t }
)]

+ νt + δU t+1(σ
2
θ).

As σ2
θ → 0, U t(σ

2
θ) converges to

U t = −c1{µt>x∗
t } +

(
µt − νt − δU t+1

)
f
(
1{µt>x∗

t }
)
+ νt + δU t+1,

as we wanted. Intuitively, if µt > x∗
t then, for σ2

θ and σ2
ϵ small enough, it is almost

certain that θt > x∗
t and that almost all agents protest, so lt is close to 1. Conversely,

if µt < x∗
t , then it is almost certain that θt < x∗

t and that almost nobody protests, so
lt is close to 0.

Proof of Corollary 1. For part (i), assume that µt = µ for all t, with µ < µ0. Then,
using Equation (3), we can calculate

x∗
T =

c

α(a1 + a2)
+

ν

1− δ
.

Since µ < µ0, as σ2
θ goes to zero, for σ2

ϵ (σ
2
θ) small enough, we are in the limit equi-

librium characterized in Proposition 2 in the case µt < x∗
t , in which θt < x∗

t with
probability going to one, and lt converges in probability to zero. Hence

UT = f(0)µ+ (1− f(0))
ν

1− δ
.

We can then calculate

x∗
T−1 =

c

α(a1 + a2)
+ ν + δf(0)µ+ δ(1− f(0))

ν

1− δ
.
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There are now two cases. If µ ∈
(

ν
1−δ

, µ0

)
, then automatically x∗

T−1 > x∗
T > µ, so

that almost no one attacks in period T − 1 either. By backward induction, we obtain
that

U t = f(0)
1− δT−t+1(1− f(0))T−t+1

1− δ(1− f(0))
µ+

[
1− f(0)

1− δT−t+1(1− f(0))T−t+1

1− δ(1− f(0))

]
ν

1− δ

x∗
t−1 =

c

α(a1 + a2)
+ ν + δU t,

whence U t > U t+1 and x∗
t > x∗

t+1 > . . . > µ for all t, and almost no one ever attacks
in equilibrium. On the other hand, if µ ≤ ν

1−δ
, then U t and x∗

t−1 obey the same
equations, but now x∗

t > µ instead follows from the fact that x∗
t > ν + δU t+1 which

is a convex combination of µ and ν
1−δ

, hence higher than µ.
For part (ii), suppose that µt = µ > µ∗ for all t. Then, from Equation (4), we

know that, if x∗
t < µ for all t ≥ t0, then for all t between t0 and T − 1,

U t = −c+ f(1)µ+ (1− f(1))(ν + δU t+1),

with UT = −c+ f(1)µ+ (1− f(1)) ν
1−δ

. Equivalently, for t ≥ t0,

U t =
1− δT−t+1(1− f(1))T−t+1

1− δ(1− f(1))
(−c+ f(1)µ) +

[
1− f(1)

1− δT−t+1(1− f(1))T−t+1

1− δ(1− f(1))

]
ν

1− δ
.

This is a convex combination of µ − c
f(1)

and ν
1−δ

, with the weight on the first term
decreasing in t. Since

µ∗ ≥ c

a0 + a1 + a2
+

ν

1− δ
=

c

f(1)
+

ν

1− δ
,

with equality iff α = 1 and a0 = 0, and µ > µ∗, we know that µ − c
f(1)

> ν
1−δ

, so
U t0 > . . . > UT > ν

1−δ
and x∗

t0−1 > . . . > x∗
T . For most players to attack in equilibrium

at time t0 − 1, we need x∗
t0−1 < µ.

Iterating, to prove the result we need to show that x∗
t < µ for all t with the

thresholds calculated as above, i.e., under the assumption that all agents will attack
in future periods. Because the sequence is decreasing in t, it is enough to show that
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µ > limt→−∞ x∗
t , i.e.,

µ >
c

α(a1 + a2)
+ ν + δ

−c+ f(1)µ

1− δ(1− f(1))
+ δ

(1− δ)(1− f(1))

1− δ + δf(1)

ν

1− δ

⇐⇒ 1− δ

1− δ + δf(1)
µ >

c

α(a1 + a2)
− δc

1− δ + δf(1)
+

ν

1− δ + δf(1)

⇐⇒ µ >
c

α(a1 + a2)

(
1 +

δf(1)

1− δ

)
− δc

1− δ
+

ν

1− δ
= µ∗.

Finally, for part (iii), it is convenient to relabel time periods as follows: set T =

0 and assume the game is played beginning at any integer t < 0. Let (x∗
t )t∈Z≤0

be the sequence of equilibrium attack thresholds for this game, as characterized in
Proposition 2, for σ2

θ → 0 with σ2
ϵ small enough. We will show that, generically,

there are infinitely many values of t for which x∗
t > µt and infinitely many for which

x∗
t < µt. (We will discard the non-generic case in which µt = x∗

t for any t. Note that,
given values of µt+1, . . . , µ0, and the other parameters satisfying this constraint, the
value of U t+1 is uniquely pinned down, and hence so is x∗

t , by Equation (3), so there
is a single real value of µt that is being ruled out.)

Suppose the former statement is not true, so that x∗
t ≤ µt for all t ≤ t0 for some

t0. By our genericity assumption, we must then have x∗
t < µt for all t ≤ t0, and

U t = −c+ f(1)µt + (1− f(1))(ν + δU t+1) (8)

for all t ≤ t0. Let µ = lim inft→−∞ µt. Let (ts)s∈N be a subsequence such that
µ = lims→∞ µts . Then, taking the limit of the inequality x∗

ts < µts as s → ∞, we
must have x∗ ≤ µ for any x∗ that the x∗

ts accumulate to. In particular, lim inf x∗
t ≤ µ,

or equivalently
c

α(a1 + a2)
+ ν + δ lim inf U t ≤ µ.

Equation (8) implies that U t, and U t′ for all t′ < t, are increasing functions of
µt. Hence lim inf U t is bounded below by a hypothetical Ũ calculated under the
assumptions that everyone always attacks and that µt = µ for all t, i.e.,

lim inf U t ≥ Ũ =
−c+ f(1)µ

1− δ + δf(1)
+

(1− f(1))ν

1− δ + δf(1)
,

calculating Ũ as in part (ii).
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Then it must be that

c

α(a1 + a2)
+ ν + δ

−c+ f(1)µ

1− δ + δf(1)
+ δ

(1− f(1))ν

1− δ + δf(1)
≤ µ

⇐⇒ µ∗ ≤ µ.

Indeed, by construction, µ∗ is the threshold value of µ which would make this in-
equality hold with equality. But, since µt ≤ µ∗ − η for all t, µ ≤ µ∗ − η < µ∗, a
contradiction.

The proof for the latter part of the claim is similar. Suppose that x∗
t ≥ µt for all t

below some t0. By our genericity assumption, we must have x∗
t > µt for all t ≤ t0, so

U t = f(0)µt + (1− f(0))(ν + δU t+1) (9)

for all t ≤ t0. Letting µ = lim supt→−∞ µt, we must have lim sup x∗
t ≥ µ, or equiva-

lently
c

α(a1 + a2)
+ ν + δ lim supU t ≥ µ.

In turn U t is bounded above by a hypothetical Û calculated under the assumption
that no one attacks in the future and µt = µ for all t, i.e.,

lim supU t ≤ Û =
f(0)µ

1− δ + δf(0)
+

(1− f(0))ν

1− δ + δf(0)
.

Then we must have

c

α(a1 + a2)
+ ν + δ

f(0)µ

1− δ + δf(0)
+ δ

(1− f(0))ν

1− δ + δf(0)
≥ µ

⇐⇒ µ∗ ≥ µ.

But by assumption µ ≥ µ∗ + η > µ∗, a contradiction.

Proof of Proposition 3. By Equation 4, ∂x∗
t

∂νt
= 1. For t′ > t, assuming a marginal

change that does not change the equilibrium actions, x∗
t only depends on νt′ through

U t+1, which only depends on νt′ through U t+2, . . . , which only depends on νt′ through

39



U t′ . So

∂x∗
t

∂νt′
= δ

∂U t+1

∂νt′
= δ

t′−t−1∏
s=1

∂U t+s

∂U t+s+1

∂U t′

∂νt′
= δt

′−t

t′−t∏
s=1

(
1− f(1µt+s>x∗

t+s
)
)
≥ 0,

with equality only if f(1) = 1 and µt+s > x∗
t+s for some s between 1 and t′ − t. As

for changes in µt, by Equation 4, ∂x∗
t

∂µt
= 0. However, ∂Ut

∂µt
= f(1µt+s>x∗

t+s
). Hence, for

t′ > t,

∂x∗
t

∂µt′
= δ

t′−t−1∏
s=1

∂U t+s

∂U t+s+1

∂U t′

∂µt′
= δt

′−t

t′−t−1∏
s=1

(
1− f(1µt+s>x∗

t+s
)
)
f(1µt′>x∗

t′
) ≥ 0,

with equality only if f(1) = 1 and µt+s > x∗
t+s for some s between 1 and t′ − t− 1, or

f(0) = 0 and µt′ < x∗
t′ .

Derivation of Equation (6). By analogous arguments to those used in the proof of
Proposition 1, x∗

t (σ
2
ϵ , σ

2
θ) is the unique value of x that solves the equation

0 =∆it(x, x, σ
2
ϵ , σ

2
θ) = −c+ E

[
α(θt + ltρt − νt − δU t+1)f

′(lt) + ρtf(lt)|xit = x
]

=− c+ αE(θtf
′(lt)|xit = x)− α(νt + δU t+1)E(f ′(lt)|xit = x)+

+ αρtE(ltf
′(lt)|xit = x) + ρtE(f(lt)|xit = x)

−−−→
σ2
ϵ→0

− c+ αx(a1 + a2)− α(νt + δU t+1)(a1 + a2)+

+ αρtE(a1lt + 2a2l
2
t |xit = x) + ρtE(a0 + a1lt + a2l

2
t |xit = x)

As shown in Proposition 1, E(lt|xit = x∗
t (σ

2
ϵ , σ

2
θ)) converges to E(Φ(z)) = 1

2
, where

z ∼ N(0, 1), as σ2
ϵ → 0. By the same arguments, we can show that E(l2t |xit =

x∗
t (σ

2
ϵ , σ

2
θ)) converges to E(Φ(z)2) as σ2

ϵ → 0. Moreover, Φ(z) is clearly distributed
U [0, 1], since P (Φ(z) ≤ z0) = P (z ≤ Φ−1(z0)) = Φ(Φ−1(z0)) = z0 by definition, for
any z0 ∈ [0, 1]. Hence E(Φ(z)2) =

∫ 1

0
x2dx = 1

3
. Substituting these identities into the

above and rearranging yields Equation (6).
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